• Title/Summary/Keyword: data-driven approach

Search Result 315, Processing Time 0.026 seconds

Stakeholders Driven Requirements Engineering Approach for Data Warehouse Development

  • Kumar, Manoj;Gosain, Anjana;Singh, Yogesh
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.385-402
    • /
    • 2010
  • Most of the data warehouse (DW) requirements engineering approaches have not distinguished the early requirements engineering phase from the late requirements engineering phase. There are very few approaches seen in the literature that explicitly model the early & late requirements for a DW. In this paper, we propose an AGDI (Agent-Goal-Decision-Information) model to support the early and late requirements for the development of DWs. Here, the notion of agent refers to the stakeholders of the organization and the dependency among agents refers to the dependencies among stakeholders for fulfilling their organizational goals. The proposed AGDI model also supports three interrelated modeling activities namely, organization modeling, decision modeling and information modeling. Here, early requirements are modeled by performing organization modeling and decision modeling activities, whereas late requirements are modeled by performing information modeling activities. The proposed approach has been illustrated to capture the early and late requirements for the development of a university data warehouse exemplifying our model's ability of supporting its decisional goals by providing decisional information.

A Travel Time Budget Estimation Using a Mobile Phone Signaling Data (통신 빅데이터를 활용한 통행시간예산 산출 연구)

  • Chung, Younshik;Nam, Sanggi;Song, Tai-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.457-465
    • /
    • 2018
  • This study proposes a novel approach to explore a "travel time budget (TTB)" using a mobile phone signaling data (MPSD), which are passively generated between a mobile phone and a base station. The data analyzied in this study were provided from KT for 8 days (from May 19 to 26 in 2016). They were about 45 million signals passively generated from users whose stay area during night was classified as three areas in Mapo-gu, Seoul and in the city of Sejong. The estmation of TTB was implemented with various pre-processing techniques on the MPSD data in a data-driven analysis. As a result, the TTBs of Mapo-gu, Seoul and Sejong were 82.94 and 80.70 minutes, respectively. The results in this study were also compared with those based on the traditional methods. The authors expect that this result will help transport experts improve the use of MPSD.

A study on Development of Remote Vehicle Fault Diagnostic System (원격 자동차 고장 진단 시스템 개발에 대한 연구)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • Data transmission via the car driver's tethered smart phone may have a volume-dependent billing in case car driver' phone transmits data in real-time to the remote data center. The on-board diagnosis data generated are temporary stored locally to mobile remote diagnosis application on the car driver's phone, and then transmit to the data center later when car driver connects to the Internet. To increase the easiest of using the remote vehicle application without blocking other tasks to be executing on the cloud, node.js stands as a suitable candidate for handling tasks of data storage on the cloud via mobile network. We demonstrate the effectiveness of the proposed architecture by simulating a preliminary case study of an android application responsible of real time analysis by using a vehicle-to- smart phones applications interface approach that considers the smart phones to act as a remote user which passes driver inputs and delivers output from external applications. In this paper, we propose a study on development of Remote Vehicle fault diagnostic system features web server architecture based event loop approach using node.js platform, and wireless communication to handle vehicle diagnostics data to a data center.

  • PDF

How Digital Technology Driven Millennial Consumer Behaviour in Indonesia

  • INDAHINGWATI, Asmara;LAUNTU, Ansir;TAMSAH, Hasmin;FIRMAN, Ahmad;PUTRA, Aditya Halim Perdana Kusuma;ASWARI, Aan
    • Journal of Distribution Science
    • /
    • v.17 no.8
    • /
    • pp.25-34
    • /
    • 2019
  • Purpose - Investigate the association of internal and external factors of consumers and analysing the role of moderating comparative marketing aspects, especially the part of YouTuber and celebgram in influencing purchase decisions. Apart from that, it provides an overview of the pattern of purchase decision making in forming Millennials and Y generation consumer culture Research design, data, and methodology - This study uses a quantitative research approach with descriptive, predictive, and prospective data analysis on 300 eligible Millennials and Y aged 20-35 years who are bachelor-educated. Data collection using online surveys with final statistical analysis using the Partial Least Square (PLS) approach Results - All hypothesis are declared accepted, indirect testing the dominant internal consumer factors have a positive and significant effect on consumers' purchase decisions. Through testing Moderating, aspect marketing comparative is also authoritative able to moderate internal consumer factors towards purchase decision making. Conclusions - Digital technology is changing the paradigm and perceptions of the millennials and Y generations in terms of behaving as a generation of technology connoisseurs who also influence and shape the culture of that generation and the generations to come in the future.

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

Factors Affecting HR Analytics Adoption: A Systematic Review Using Literature Weighted Scoring Approach

  • Suchittra Pongpisutsopa;Sotarat Thammaboosadee;Rojjalak Chuckpaiwong
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.847-878
    • /
    • 2020
  • In the era of disruptive change, a data-driven approach is vital to Human Resource Management (HRM) of any leading organization, for it is used to gain a competitive advantage. HR analytics (HRA) has emerged as innovative technologies since advanced analytics, i.e., predictive or prescriptive analytics, were widely used in the High Performing Organizations (HPOs). Therefore, many organizations elevate themselves to become HPOs through Data Science on the "people side." This paper proposes a systematic literature review using the Literature Weighted Scoring (LWS) to develop a conceptual framework based on three adoption theories, which are the Technology-Organization-Environment (TOE), Diffusion of Innovation (DOI), and Unified Theory of Acceptance and Use of Technology (UTAUT). The results show that a total of 13 theory-derived factors are determined as influential factors affecting HRA adoption, and the top three factors are "Quantitative Self-Efficacy," "Top Management Support," and "Data Availability." The conceptual framework with hypotheses is proposed to provide a foundation for further studies on organizational HRA adoption.

Identifying the Effects of Repeated Tasks in an Apartment Construction Project Using Machine Learning Algorithm (기계적 학습의 알고리즘을 이용하여 아파트 공사에서 반복 공정의 효과 비교에 관한 연구)

  • Kim, Hyunjoo
    • Journal of KIBIM
    • /
    • v.6 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Learning effect is an observation that the more times a task is performed, the less time is required to produce the same amount of outcomes. The construction industry heavily relies on repeated tasks where the learning effect is an important measure to be used. However, most construction durations are calculated and applied in real projects without considering the learning effects in each of the repeated activities. This paper applied the learning effect to the repeated activities in a small sized apartment construction project. The result showed that there was about 10 percent of difference in duration (one approach of the total duration with learning effects in 41 days while the other without learning effect in 36.5 days). To make the comparison between the two approaches, a large number of BIM based computer simulations were generated and useful patterns were recognized using machine learning algorithm named Decision Tree (See5). Machine learning is a data-driven approach for pattern recognition based on observational evidence.

A framework for selecting information systems planning (ISP) approach (ISP 방법론 비교 선정을 위한 프레임워크)

  • Sung Kun Kim;Soon Sam Hwang
    • Journal of Information Technology Applications and Management
    • /
    • v.9 no.3
    • /
    • pp.129-139
    • /
    • 2002
  • There exist a number of information systems planning (ISP) methodologies. Historically these methodologies have been evolving to reflect new technologies and business requirements. In fact, it is an uneasy task to select a methodology that fits a business need. Though there have been a number of studies proposing new ISP approaches, we are unable to find much research doing a comparative analysis on existing ISP methodologies. Our study, therefore, is to present a classification scheme for ISP approaches and to provide a guideline framework for selecting an approach most suitable to a particular firm's need. Our classification utilizes types of components covered in ISP deliverables and the peculiarity of these components. Such classification scheme and selection framework would help derive an IT-driven new enterprise model more effectively.

  • PDF

Model updation using multiple parameters influencing servoelastic response of a flexible aircraft

  • Srinivasan, Prabha;Joshi, Ashok
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.185-202
    • /
    • 2017
  • In a flexible airvehicle, an assessment of the structural coupling levels through analysis and experiments provides structural data for the design of notch filters which are generally utilized in the flight control system to attenuate the flexible response pickup. This is necessitated as during flight, closed loop control actuation driven with flexible response inputs could lead to stability and performance related problems. In the present work, critical parameters influencing servoelastic response have been identified. A sensitivity study has been carried out to assess the extent of influence of each parameter. A multi-parameter tuning approach has been implemented to achieve an enhanced analytical model for improved predictions of aircraft servoelastic response. To illustrate the model updation approach, initial and improved test analysis correlation of lateral servoelastic responses for a generic flexible airvehicle are presented.

Multi-Stage CMOS OTA Frequency Compensation: Genetic algorithm approach

  • Mohammad Ali Bandari;Mohammad Bagher Tavakoli;Farbod Setoudeh;Massoud Dousti
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.690-703
    • /
    • 2023
  • Multistage amplifiers have become appropriate choices for high-speed electronics and data conversion. Because of the large number of high-impedance nodes, frequency compensation has become the biggest challenge in the design of multistage amplifiers. The new compensation technique in this study uses two differential stages to organize feedforward and feedback paths. Five Miller loops and a 500-pF load capacitor are driven by just two tiny compensating capacitors, each with a capacitance of less than 10 pF. The symbolic transfer function is calculated to estimate the circuit dynamics and HSPICE and TSMC 0.18 ㎛. CMOS technology is used to simulate the proposed five-stage amplifier. A straightforward iterative approach is also used to optimize the circuit parameters given a known cost function. According to simulation and mathematical results, the proposed structure has a DC gain of 190 dB, a gain bandwidth product of 15 MHz, a phase margin of 89°, and a power dissipation of 590 ㎼.