• 제목/요약/키워드: data-driven SSI

검색결과 13건 처리시간 0.024초

SSA-based stochastic subspace identification of structures from output-only vibration measurements

  • Loh, Chin-Hsiung;Liu, Yi-Cheng;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.331-351
    • /
    • 2012
  • In this study an output-only system identification technique for civil structures under ambient vibrations is carried out, mainly focused on using the Stochastic Subspace Identification (SSI) based algorithms. A newly developed signal processing technique, called Singular Spectrum Analysis (SSA), capable to smooth a noisy signal, is adopted for preprocessing the measurement data. An SSA-based SSI algorithm with the aim of finding accurate and true modal parameters is developed through stabilization diagram which is constructed by plotting the identified system poles with increasing the size of data matrix. First, comparative study between different approaches, with and without using SSA to pre-process the data, on determining the model order and selecting the true system poles is examined in this study through numerical simulation. Finally, application of the proposed system identification task to the real large scale structure: Canton Tower, a benchmark problem for structural health monitoring of high-rise slender structures, using SSA-based SSI algorithm is carried out to extract the dynamic characteristics of the tower from output-only measurements.

Mode identifiability of a cable-stayed bridge using modal contribution index

  • Huang, Tian-Li;Chen, Hua-Peng
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.115-126
    • /
    • 2017
  • The modal identification of large civil structures such as bridges under the ambient vibrational conditions has been widely investigated during the past decade. Many operational modal analysis methods have been proposed and successfully used for identifying the dynamic characteristics of the constructed bridges in service. However, there is very limited research available on reliable criteria for the robustness of these identified modal parameters of the bridge structures. In this study, two time-domain operational modal analysis methods, the data-driven stochastic subspace identification (SSI-DATA) method and the covariance-driven stochastic subspace identification (SSI-COV) method, are employed to identify the modal parameters from field recorded ambient acceleration data. On the basis of the SSI-DATA method, the modal contribution indexes of all identified modes to the measured acceleration data are computed by using the Kalman filter, and their applicability to evaluate the robustness of identified modes is also investigated. Here, the benchmark problem, developed by Hong Kong Polytechnic University with field acceleration measurements under different excitation conditions of a cable-stayed bridge, is adopted to show the effectiveness of the proposed method. The results from the benchmark study show that the robustness of identified modes can be judged by using their modal contributions to the measured vibration data. A critical value of modal contribution index of 2% for a reliable identifiability of modal parameters is roughly suggested for the benchmark problem.

Identification of 18 flutter derivatives by covariance driven stochastic subspace method

  • Mishra, Shambhu Sharan;Kumar, Krishen;Krishna, Prem
    • Wind and Structures
    • /
    • 제9권2호
    • /
    • pp.159-178
    • /
    • 2006
  • For the slender and flexible cable supported bridges, identification of all the flutter derivatives for the vertical, lateral and torsional motions is essential for its stability investigation. In all, eighteen flutter derivatives may have to be considered, the identification of which using a three degree-of-freedom elastic suspension system has been a challenging task. In this paper, a system identification technique, known as covariance-driven stochastic subspace identification (COV-SSI) technique, has been utilized to extract the flutter derivatives for a typical bridge deck. This method identifies the stochastic state-space model from the covariances of the output-only (stochastic) data. All the eighteen flutter derivatives have been simultaneously extracted from the output response data obtained from wind tunnel test on a 3-DOF elastically suspended bridge deck section-model. Simplicity in model suspension and measurements of only output responses are additional motivating factors for adopting COV-SSI technique. The identified discrete values of flutter derivatives have been approximated by rational functions.

정책기반 RFID 데이터 관리 이벤트 정의 언어 (A Policy-driven RFID Data Management Event Definition Language)

  • 송지혜;김광훈
    • 인터넷정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.55-70
    • /
    • 2011
  • 본 논문 에서는 기존의 대표적인 RFID 미들웨어 표준인 RFID 응용 인터페이스 표준규격1)으로 적용가능한 정책 기반의 RFID 데이터 관리 이벤트 정의 언어를 제안한다. 즉, RFID 응용인터페이스는 RFID 미들웨어의 핵심 구성요소인 데이터관리 기능, 장치관리 기능, 장치인터페이스 기능, 정보보호관리 기능을 응용 프로그램에게 제공하기 위한 표준인터페이스이며, 본 논문에서 제안하는 언어는 그 중 RFID 미들웨어의 데이터관리 기능, 즉 이벤트관리 기능을 지원하기 위한 추상화된 인터페이스를 제공하는데 그 목적이 있다. 특히, 이벤트 제약조건을 정의하기 위한 정책의 개념은 RF 리더들로부터 읽혀지는 대용량의 태그데이터를 정제 또는 여과시키기 위한 이벤트 제약조건들을 정의하는 수단으로서 RFID 미들웨어의 기능에 대한 기술적 전문지식이 부족한 응용프로그램 개발자들이 자신의 응용영역을 쉽게 표현할 수 있을 뿐 만 아니라 고수준의 추상화된 인터페이스를 제공할 수 있는 매우 효과적인 수단이라고 할 수 있다. 결과적으로, 본 논문에서는 RFID 응용인터페이스의 상세표준규격으로 제정 될 수 있는 일명 rXPDL, XML기반의 RFID 데이터 관리 이벤트 정책 정의 언어 (rXPDL: XML-based RFID Data Management Event Policy Definition Language)를 정의하며, 이는 곧 정책기반 RFID 데이터 관리 응용인터페이스 정의 언어로서 국내외 표준 규격의 기반이 될 것으로 기대한다. 또한, rXPDL의 상세표준규격들은 유비쿼터스센서네트워크 미들웨어의 데이터 관리를 위한 표준규격으로서의 확장을 기대할 수도 있다.

System identification of a super high-rise building via a stochastic subspace approach

  • Faravelli, Lucia;Ubertini, Filippo;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.133-152
    • /
    • 2011
  • System identification is a fundamental step towards the application of structural health monitoring and damage detection techniques. On this respect, the development of evolved identification strategies is a priority for obtaining reliable and repeatable baseline modal parameters of an undamaged structure to be adopted as references for future structural health assessments. The paper presents the identification of the modal parameters of the Guangzhou New Television Tower, China, using a data-driven stochastic subspace identification (SSI-data) approach complemented with an appropriate automatic mode selection strategy which proved to be successful in previous literature studies. This well-known approach is based on a clustering technique which is adopted to discriminate structural modes from spurious noise ones. The method is applied to the acceleration measurements made available within the task I of the ANCRiSST benchmark problem, which cover 24 hours of continuous monitoring of the structural response under ambient excitation. These records are then subdivided into a convenient number of data sets and the variability of modal parameter estimates with ambient temperature and mean wind velocity are pointed out. Both 10 minutes and 1 hour long records are considered for this purpose. A comparison with finite element model predictions is finally carried out, using the structural matrices provided within the benchmark, in order to check that all the structural modes contained in the considered frequency interval are effectively identified via SSI-data.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • 제11권1호
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

운용중 모드해석 방법과 신경망을 이용한 온라인 유한요소모델 업데이트 (On-line Finite Element Model Updating Using Operational Modal Analysis and Neural Networks)

  • 박원석
    • 한국전산구조공학회논문집
    • /
    • 제34권1호
    • /
    • pp.35-42
    • /
    • 2021
  • 이 논문에서는 공용중인 구조물의 상시 계측 자료를 사용한 온라인 유한요소 모델 업데이트 방법을 제안한다. 일반적인 최적화 방법에 기반한 기존의 방법은 최적해를 찾기까지 반복적으로 고유치 해석을 수행해야 하므로 상시 업데이트에 사용하기에는 효과적이지 못하다. 제안하는 방법은 별도의 오프라인 작업이나 사용자의 개입이 없이 자동화된 과정으로 계측과 동시에 온라인 유한요소모델 업데이트를 수행할 수 있는 새로운 방법이다. 자동화된 Cov-SSI 알고리즘을 통해 구조물의 진동 계측 신호로부터 고유진동수 및 모드 형상을 식별하고, 이를 다시 역 고유치 신경망에 입력하여 최종적으로 업데이트된 유한요소 모델의 파라미터를 추정한다. 풍하중을 받는 20층 전단 빌딩 구조 모형에 대한 수치예제를 통해 제시한 방법이 자동으로 연속적인 유한요소모델 업데이트를 할 수 있었음을 확인하였다. 또한, 계측 도중 구조물의 특성이 변화하는 시나리오에 대한 예제에서 구조물의 변화가 일어나는 시점과 변화 후 변동된 구조 모델 파라미터 값을 성공적으로 추정할 수 있음을 확인하였다.

Operational modal analysis for Canton Tower

  • Niu, Yan;Kraemer, Peter;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.393-410
    • /
    • 2012
  • The 610 m high Canton Tower (formerly named Guangzhou New Television Tower) is currently considered as a benchmark problem for structural health monitoring (SHM) of high-rise slender structures. In the benchmark study task I, a set of 24-hour ambient vibration measurement data has been available for the output-only system identification study. In this paper, the vector autoregressive models (ARV) method is adopted in the operational modal analysis (OMA) for this TV tower. The identified natural frequencies, damping ratios and mode shapes are presented and compared with the available results from some other research groups which used different methods, e.g., the data-driven stochastic subspace identification (SSI-DATA) method, the enhanced frequency domain decomposition (EFDD) algorithm, and an improved modal identification method based on NExT-ERA technique. Furthermore, the environmental effects on the estimated modal parameters are also discussed.

한반도·동아시아 지역의 실시간 가뭄 감시 및 전망 시스템 개발 (Development of Real-Time Drought Monitoring and Prediction System on Korea & East Asia Region)

  • 배덕효;손경환;안중배;홍자영;김광섭;정준석;정의석;김종군
    • 대기
    • /
    • 제22권2호
    • /
    • pp.267-277
    • /
    • 2012
  • The objectives of this study are to develop a real-time drought monitoring and prediction system on the East Asia domain and to evaluate the performance of the system by using past historical drought records. The system is mainly composed of two parts: drought monitoring for providing current drought indices with meteorological and hydrological conditions; drought outlooks for suggesting future drought indices and future hydrometeorological conditions. Both parts represent the drought conditions on the East Asia domain (latitude $21.15{\sim}50.15^{\circ}$, longitude $104.40{\sim}149.65^{\circ}$), Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$) and South Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$), respectively. The observed meteorological data from ASOS (Automated Surface Observing System) and AWS (Automatic Weather System) of KMA (Korean Meteorological Administration) and model-driven hydrological data from LSM (Land Surface model) are used for the real-time drought monitoring, while the monthly and seasonal weather forecast information from UM (Unified Model) of KMA are utilized for drought outlooks. For the evaluation of the system, past historical drought records occurred in Korea are surveyed and are compared with the application results of the system. The results demonstrated that the selected drought indices such as KMA drought index, SPI (3), SPI (6), PDSI, SRI and SSI are reasonable, especially, the performance of SRI and SSI provides higher accuracy that the others.

주성분 분석을 활용한 자연가뭄지수 산정 및 평가 (Estimation and assessment of natural drought index using principal component analysis)

  • 김선호;이문환;배덕효
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.565-577
    • /
    • 2016
  • 본 연구에서는 인위적 수공시설물을 고려하지 않는 자연상태의 가뭄해석을 위해 자연가뭄지수(NDI)를 산정하고 활용성을 평가하였다. 자연가뭄지수는 주성분 분석을 이용하여 산정하였으며, 입력자료는 3개월 누적강수량, 자연유량, 토양수분량 자료이다. 강수량은 ASOS 59개 지점 자료이고, 자연유량 및 토양수분량은 지표수문해석모형의 결과를 이용하였다. 가뭄지수의 평가기간은 1977~2012년이며, 활용성 평가를 위해 시계열 분석, 지역별 분석 및 가뭄특성인자 분석을 수행하였다. 시계열 분석결과, 자연가뭄지수는 가뭄의 시작과 끝에 대한 평균절대오차는 0.85로 가장 정확하게 나타났다. 과거 가뭄사례와 가뭄특성인자를 분석한 결과, 자연가뭄지수의 지속기간과 발생간격의 평균절대오차는 각각 1.3, 1.0으로 가뭄의 지속기간 및 발생간격을 적절히 반영하는 것을 확인하였다. 지역별 분석결과, 자연가뭄지수는 단일변량 가뭄지수의 지역별 가뭄상황을 적절히 반영하여 활용성이 높은 것으로 나타났다. 또한, 가뭄의 시작, 끝, 지속기간, 발생간격에 대한 자연가뭄지수, 표준강수지수, 표준유출지수, 표준토양수분지수의 순위를 분석한 결과 자연가뭄지수가 가장 높은 순위로 산정되었다. 자연가뭄지수는 기존 단일변량 가뭄지수의 상이한 가뭄상황을 종합적으로 반영하며, 가뭄의 특성을 정량적으로 제시한다는 점에서 활용성이 높다고 판단된다.