Although process-based models have been a preferred approach for modeling freshwater aquatic systems over extended time intervals, the increasing utility of data-driven models in a big data environment has made the data-driven models increasingly popular in recent decades. In this study, international peer-reviewed journals for the relevant fields were searched in the Web of Science Core Collection, and an extensive literature review, which included total 2,984 articles published during the last two decades (2000-2020), was performed. The review results indicated that the rate of increase in the number of published studies using data-driven models exceeded those using process-based models since 2010. The increase in the use of data-driven models was partly attributable to the increasing availability of data from new data sources, e.g., remotely sensed hyperspectral or multispectral data. Consistently throughout the past two decades, South Korea has been one of the top ten countries in which the greatest number of studies using the data-driven models were published. Among the major data-driven approaches, i.e., artificial neural network, decision tree, and Bayesian model, were illustrated with case studies. Based on the review, this study aimed to inform the current state of knowledge regarding the biogeochemical water quality and ecological models using data-driven approaches, and provide the remaining challenges and future prospects.
기존의 멀티스케일 유한요소법(Multiscale finite element, FE2 )은 거시 스케일의 모든 적분점에서 대표 체적요소(representative volume element, RVE)의 미시 경계치 문제를 반복적으로 계산하기 때문에 긴 해석 시간과 많은 데이터 저장 공간을 필요로 한다. 이를 해결하기 위해 본 연구에서 평균장 균질화 데이터 기반 멀티스케일 해석 기법을 개발하였다. 데이터 기반 전산역학(data-driven computational mechanics, DDCM) 해석은 변형률-응력 데이터 셋을 직접적으로 사용하는 모델-프리(model-free)접근 방식이다. 멀티스케일 해석을 수행하기 위해, 평균장 균질화(mean-field homogenization)를 활용하여 복합재의 미세구조에 대한 변형률-응력 데이터베이스(database)를 효율적으로 구축하고, 이를 기반으로 데이터 기반 전산역학 시뮬레이션을 수행하였다. 본 논문에서는 개발한 멀티 스케일 해석 프레임워크(framework)를 예제에 적용하여, 초탄성(hyperelasticity) 복합재의 미세 구조를 고려한 데이터 기반 전산역학 시뮬레이션 결과를 확인하였다. 따라서, 데이터 기반 전산역학 접근 방식을 활용한 멀티스케일 해석기법은 다양한 재료 및 구조에 적용될 수 있으며, 멀티스케일 해석 연구 및 응용 가능성을 열어줄 것으로 기대된다.
본 논문에서는 data-driven 반향제거기 구조에서 타이밍 지터의 보상 방법을 제안한다. V.90PCM 모뎀환경에서 네트윅 클록에 동기가 되어 동작하는 사용자 터미널 모뎀이 디지털 PLL (DPLL)을 이용하여 타이밍 복원을 하면 타이밍 지터 성분이 반향제거기의 성능을 순간적으로 악화 시키게 된다. 제안된 방법은 두개의 계수세트 들로부터 타이밍 지터 발생시 필요한 계수를 디콘볼루션 알고리듬을 이용하여 FIR 필터링을 통해 구하며 발생하는 지터 성분 의 대부분을 보상 해 준다. 또한 제안 방법은 waveform driven 반향제거기에 비해 약간의 성능열화가 있지만 적은 연산량으로 타이밍 지터보상을 할 수 있는 장점이 있다.
This study examines a data-driven approach for software test automation at an online shopping site. Online shopping sites typically change prices dynamically, offer various discounts or coupons, and provide diverse delivery and payment options such as electronic fund transfer, credit cards, mobile payments (KakaoPay, NaverPay, SyrupPay, ApplePay, SamsungPay, etc.) and so on. As a result, they have to test numerous combinations of possible customer choices continuously and repetitively. The total number of test cases is almost 584 billion. This requires somehow automation of tests in settling payments. However, the record playback approach has difficulties in maintaining automation scripts due to frequent changes and complicated component identification. In contrast, the data-driven approach minimizes changes in scripts and component identification. This study shows that the data-driven approach to test automation is more effective than the traditional record playback method. In 2014 before the test automation, the monthly average defects were 5.6 during the test and 12.5 during operation. In 2015 after the test automation, the monthly average defects were 9.4 during the test and 2.8 during operation. The comparison of live defects and detected errors during the test shows statistically significant differences before and after introducing the test automation using the data-driven approach.
The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.
단백질체학에서 특정 조건 하에서 단백질의 기능 이상 및 구조 변형 유무를 규명하고 질병 과정을 추적하는 것은 중요한 연구이다. 일반적으로 단백질의 발현량 변화 분석에는 통계적 방법이 많이 사용되고 있으며 단백질 상용 이미지 분석 소프트웨어에서 제공하는 그래픽을 이용한 방법들도 있으나, 이 방법들은 많은 조직 내에 존재하는 수많은 단백질을 수동으로 비교해야 하는 어려움이 있다. 본 논문에서는 데이터베이스와 데이터마이닝 기법을 이용하여 OLAP 데이터 큐브와 Discovery-driven 탐색의 응용 방법을 제안한다. 데이터 큐브의 특성을 이용함에 의해서, 질병에 의해 발현량이 변하는 단백질 뿐 아니라 임상적 특성과 단백질의 영향 관계를 분석하는 것이 가능하다. 데이터 큐브에서 단백질의 발현량 변화 분석에 적합한 데이터 큐브의 척도와Discovery-driven 탐색을 위한 예외 지표를 제안하고, 특히 In-exception을 계산하는데 있어서의 계산량 감소 방안을 제시한다. 실험을 통해 폐암 2-DE 데이터에서 데이터 큐브와 Discovery-driven 방법이 유용함을 보인다.
Purpose - The purpose of this study was to analyze cases of big data-driven business in the financial industry, focusing on organizational structure and business processes using big data in banking industry. Design/methodology/approach - This study used a case study approach. To this end, cases of two banks implementing big data-driven business were collected and analyzed. Findings - There are two things in common between the two cases. One is that the central tasks for big data-driven business are performed by a centralized organization. The other is that the role distribution and work collaboration between the headquarters and business departments are well established. On the other hand, there are two differences between the two banks. One marketing campaign is led by the headquarters and the other marketing campaign is led by the business departments. The two banks differ in how they carry out marketing campaigns and how they carry out big data-related tasks. Research implications or Originality - When banks plan and implement big data-driven business, the common aspects of the two banks analyzed through this case study can be fully referenced when creating an organization and process. In addition, it will be necessary to create an organizational structure and work process that best fit the special situation considering the company's environment or capabilities.
빅데이터 기반의 디지털 트랜스포메이션은 데이터 및 데이터 관련 기술을 통해 기업의 성과 향상, 조직 변화, 사회 공헌 등의 목적 달성을 위해 수행하는 혁신적 프로세스를 의미한다. 성공적인 빅데이터 기반의 디지털 트랜스포메이션을 위해서는 관련 연구 현황, 주요 연구토픽, 주요 연구토픽 간의 관계를 이해하는 것이 필수적이다. 그러나 여러 연구들의 서로 다른 관점 및 이들 간 연계 가능성에 대해 이해하려는 노력은 아직 미진하다. 본 논문은 텍스트마이닝을 활용하여 관련 연구동향을 분석하고, 여러 연구의 다양한 관점을 통합적으로 이해하기 위한 기반 마련을 시도해보았다. Web of Science Core Collection에서 추출한 439편의 논문을 분석하여, 10개의 주요 연구토픽을 도출하였고, 이들 간의 관계를 분석하였다. 본 연구의 결과가 빅데이터 기반의 디지털 트랜스포메이션에 대한 통합적인 이해를 촉진하고, 성공을 위한 방향성 모색에 기여할 것으로 기대한다.
With the emergence of a new paradigm called Open Science and Big Data, the need for data sharing and collaboration is also emerging in the computational science field. This paper, we analyzed data-driven research cases for computational science by field; material design, bioinformatics, high energy physics. We also studied the characteristics of the computational science data and the data management issues. To manage computational science data effectively it is required to have data quality management, increased data reliability, flexibility to support a variety of data types, and tools for analysis and linkage to the computing infrastructure. In addition, we analyzed trends of platform technology for efficient sharing and management of computational science data. The main contribution of this paper is to review the various computational science data repositories and related platform technologies to analyze the characteristics of computational science data and the problems of data management, and to present design considerations for building a future computational science data platform.
This study focuses on the concept of multi-scale wireless sensor networks for damage detection in civil infrastructure systems by first over viewing the general network philosophy and attributes in the areas of data acquisition, data reduction, assessment and decision making. The data acquisition aspect includes a scalable wireless sensor network acquiring acceleration and strain data, triggered using a Restricted Input Network Activation scheme (RINAS) that extends network lifetime and reduces the size of the requisite undamaged reference pool. Major emphasis is given in this study to data reduction and assessment aspects that enable a decentralized approach operating within the hardware and power constraints of wireless sensor networks to avoid issues associated with packet loss, synchronization and latency. After over viewing various models for data reduction, the concept of a data-driven Bivariate Regressive Adaptive INdex (BRAIN) for damage detection is presented. Subsequent examples using experimental and simulated data verify two major hypotheses related to the BRAIN concept: (i) data-driven damage metrics are more robust and reliable than their counterparts and (ii) the use of heterogeneous sensing enhances overall detection capability of such data-driven damage metrics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.