• Title/Summary/Keyword: data-driven

Search Result 1,926, Processing Time 0.027 seconds

Data-Driven Modeling of Freshwater Aquatic Systems: Status and Prospects (자료기반 물환경 모델의 현황 및 발전 방향)

  • Cha, YoonKyung;Shin, Jihoon;Kim, YoungWoo
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.611-620
    • /
    • 2020
  • Although process-based models have been a preferred approach for modeling freshwater aquatic systems over extended time intervals, the increasing utility of data-driven models in a big data environment has made the data-driven models increasingly popular in recent decades. In this study, international peer-reviewed journals for the relevant fields were searched in the Web of Science Core Collection, and an extensive literature review, which included total 2,984 articles published during the last two decades (2000-2020), was performed. The review results indicated that the rate of increase in the number of published studies using data-driven models exceeded those using process-based models since 2010. The increase in the use of data-driven models was partly attributable to the increasing availability of data from new data sources, e.g., remotely sensed hyperspectral or multispectral data. Consistently throughout the past two decades, South Korea has been one of the top ten countries in which the greatest number of studies using the data-driven models were published. Among the major data-driven approaches, i.e., artificial neural network, decision tree, and Bayesian model, were illustrated with case studies. Based on the review, this study aimed to inform the current state of knowledge regarding the biogeochemical water quality and ecological models using data-driven approaches, and provide the remaining challenges and future prospects.

A Data-driven Multiscale Analysis for Hyperelastic Composite Materials Based on the Mean-field Homogenization Method (초탄성 복합재의 평균장 균질화 데이터 기반 멀티스케일 해석)

  • Suhan Kim;Wonjoo Lee;Hyunseong Shin
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.329-334
    • /
    • 2023
  • The classical multiscale finite element (FE2 ) method involves iterative calculations of micro-boundary value problems for representative volume elements at every integration point in macro scale, making it a computationally time and data storage space. To overcome this, we developed the data-driven multiscale analysis method based on the mean-field homogenization (MFH). Data-driven computational mechanics (DDCM) analysis is a model-free approach that directly utilizes strain-stress datasets. For performing multiscale analysis, we efficiently construct a strain-stress database for the microstructure of composite materials using mean-field homogenization and conduct data-driven computational mechanics simulations based on this database. In this paper, we apply the developed multiscale analysis framework to an example, confirming the results of data-driven computational mechanics simulations considering the microstructure of a hyperelastic composite material. Therefore, the application of data-driven computational mechanics approach in multiscale analysis can be applied to various materials and structures, opening up new possibilities for multiscale analysis research and applications.

Timing Jitter Compensation in Data-Driven Echo Canceller (Data-Driven 반향 제거기를 위한 타이밍 지터 보상)

  • 이재혁;이용환
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.565-568
    • /
    • 2000
  • 본 논문에서는 data-driven 반향제거기 구조에서 타이밍 지터의 보상 방법을 제안한다. V.90PCM 모뎀환경에서 네트윅 클록에 동기가 되어 동작하는 사용자 터미널 모뎀이 디지털 PLL (DPLL)을 이용하여 타이밍 복원을 하면 타이밍 지터 성분이 반향제거기의 성능을 순간적으로 악화 시키게 된다. 제안된 방법은 두개의 계수세트 들로부터 타이밍 지터 발생시 필요한 계수를 디콘볼루션 알고리듬을 이용하여 FIR 필터링을 통해 구하며 발생하는 지터 성분 의 대부분을 보상 해 준다. 또한 제안 방법은 waveform driven 반향제거기에 비해 약간의 성능열화가 있지만 적은 연산량으로 타이밍 지터보상을 할 수 있는 장점이 있다.

  • PDF

Software Test Automation Using Data-Driven Approach : A Case Study on the Payment System for Online Shopping (데이터 주도 접근법을 활용한 소프트웨어 테스트 자동화 : 온라인 쇼핑몰 결제시스템 사례)

  • Kim, Sungyong;Min, Daihwan;Rim, Seongtaek
    • Journal of Information Technology Services
    • /
    • v.17 no.1
    • /
    • pp.155-170
    • /
    • 2018
  • This study examines a data-driven approach for software test automation at an online shopping site. Online shopping sites typically change prices dynamically, offer various discounts or coupons, and provide diverse delivery and payment options such as electronic fund transfer, credit cards, mobile payments (KakaoPay, NaverPay, SyrupPay, ApplePay, SamsungPay, etc.) and so on. As a result, they have to test numerous combinations of possible customer choices continuously and repetitively. The total number of test cases is almost 584 billion. This requires somehow automation of tests in settling payments. However, the record playback approach has difficulties in maintaining automation scripts due to frequent changes and complicated component identification. In contrast, the data-driven approach minimizes changes in scripts and component identification. This study shows that the data-driven approach to test automation is more effective than the traditional record playback method. In 2014 before the test automation, the monthly average defects were 5.6 during the test and 12.5 during operation. In 2015 after the test automation, the monthly average defects were 9.4 during the test and 2.8 during operation. The comparison of live defects and detected errors during the test shows statistically significant differences before and after introducing the test automation using the data-driven approach.

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao;Jiahao Lu;Chunxiang Li
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.125-140
    • /
    • 2024
  • The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

Discovery-Driven Exploration Method in Lung Cancer 2-DE Gel Images Using the Data Cube (데이터 큐브를 이용한 폐암 2-DE 젤 이미지에서의 예외 탐사)

  • Shim, Jung-Eun;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.681-690
    • /
    • 2008
  • In proteomics research, the identification of differentially expressed proteins observed under specific conditions is one of key issues. There are several ways to detect the change of a specific protein's expression level such as statistical analysis and graphical visualization. However, it is quiet difficult to handle the spot information of an individual protein manually by these methods, because there are a considerable number of proteins in a tissue sample. In this paper, using database and data mining techniques, the application plan of OLAP data cube and Discovery-driven exploration is proposed. By using data cubes, it is possible to analyze the relationship between proteins and relevant clinical information as well as analyzing the differentially expressed proteins by disease. We propose the measure and exception indicators which are suitable to analyzing protein expression level changes are proposed. In addition, we proposed the reducing method of calculating InExp in Discovery-driven exploration. We also evaluate the utility and effectiveness of the data cube and Discovery-driven exploration in the lung cancer 2-DE gel image.

A Study on Big Data-Driven Business in the Financial Industry: Focus on the Organization and Process of Using Big Data in Banking Industry (금융산업의 빅데이터 경영 사례에 관한 연구: 은행의 빅데이터 활용 조직 및 프로세스를 중심으로)

  • Gyu-Bae Kim;Yong Cheol Kim;Moon Seop Kim
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.131-143
    • /
    • 2024
  • Purpose - The purpose of this study was to analyze cases of big data-driven business in the financial industry, focusing on organizational structure and business processes using big data in banking industry. Design/methodology/approach - This study used a case study approach. To this end, cases of two banks implementing big data-driven business were collected and analyzed. Findings - There are two things in common between the two cases. One is that the central tasks for big data-driven business are performed by a centralized organization. The other is that the role distribution and work collaboration between the headquarters and business departments are well established. On the other hand, there are two differences between the two banks. One marketing campaign is led by the headquarters and the other marketing campaign is led by the business departments. The two banks differ in how they carry out marketing campaigns and how they carry out big data-related tasks. Research implications or Originality - When banks plan and implement big data-driven business, the common aspects of the two banks analyzed through this case study can be fully referenced when creating an organization and process. In addition, it will be necessary to create an organizational structure and work process that best fit the special situation considering the company's environment or capabilities.

Identifying Research Trends in Big data-driven Digital Transformation Using Text Mining (텍스트마이닝을 활용한 빅데이터 기반의 디지털 트랜스포메이션 연구동향 파악)

  • Minjun, Kim
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.54-64
    • /
    • 2022
  • A big data-driven digital transformation is defined as a process that aims to innovate companies by triggering significant changes to their capabilities and designs through the use of big data and various technologies. For a successful big data-driven digital transformation, reviewing related literature, which enhances the understanding of research statuses and the identification of key research topics and relationships among key topics, is necessary. However, understanding and describing literature is challenging, considering its volume and variety. Establishing a common ground for central concepts is essential for science. To clarify key research topics on the big data-driven digital transformation, we carry out a comprehensive literature review by performing text mining of 439 articles. Text mining is applied to learn and identify specific topics, and the suggested key references are manually reviewed to develop a state-of-the-art overview. A total of 10 key research topics and relationships among the topics are identified. This study contributes to clarifying a systematized view of dispersed studies on big data-driven digital transformation across multiple disciplines and encourages further academic discussions and industrial transformation.

A Data-driven Approach for Computational Simulation: Trend, Requirement and Technology

  • Lee, Sunghee;Ahn, Sunil;Joo, Wonkyun;Yang, Myungseok;Yu, Eunji
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.123-130
    • /
    • 2018
  • With the emergence of a new paradigm called Open Science and Big Data, the need for data sharing and collaboration is also emerging in the computational science field. This paper, we analyzed data-driven research cases for computational science by field; material design, bioinformatics, high energy physics. We also studied the characteristics of the computational science data and the data management issues. To manage computational science data effectively it is required to have data quality management, increased data reliability, flexibility to support a variety of data types, and tools for analysis and linkage to the computing infrastructure. In addition, we analyzed trends of platform technology for efficient sharing and management of computational science data. The main contribution of this paper is to review the various computational science data repositories and related platform technologies to analyze the characteristics of computational science data and the problems of data management, and to present design considerations for building a future computational science data platform.

BRAIN: A bivariate data-driven approach to damage detection in multi-scale wireless sensor networks

  • Kijewski-Correa, T.;Su, S.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.415-426
    • /
    • 2009
  • This study focuses on the concept of multi-scale wireless sensor networks for damage detection in civil infrastructure systems by first over viewing the general network philosophy and attributes in the areas of data acquisition, data reduction, assessment and decision making. The data acquisition aspect includes a scalable wireless sensor network acquiring acceleration and strain data, triggered using a Restricted Input Network Activation scheme (RINAS) that extends network lifetime and reduces the size of the requisite undamaged reference pool. Major emphasis is given in this study to data reduction and assessment aspects that enable a decentralized approach operating within the hardware and power constraints of wireless sensor networks to avoid issues associated with packet loss, synchronization and latency. After over viewing various models for data reduction, the concept of a data-driven Bivariate Regressive Adaptive INdex (BRAIN) for damage detection is presented. Subsequent examples using experimental and simulated data verify two major hypotheses related to the BRAIN concept: (i) data-driven damage metrics are more robust and reliable than their counterparts and (ii) the use of heterogeneous sensing enhances overall detection capability of such data-driven damage metrics.