• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.042 seconds

Classical and Bayesian inferences of stress-strength reliability model based on record data

  • Sara Moheb;Amal S. Hassan;L.S. Diab
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.497-519
    • /
    • 2024
  • In reliability analysis, the probability P(Y < X) is significant because it denotes availability and dependability in a stress-strength model where Y and X are the stress and strength variables, respectively. In reliability theory, the inverse Lomax distribution is a well-established lifetime model, and the literature is developing inference techniques for its reliability attributes. In this article, we are interested in estimating the stress-strength reliability R = P(Y < X), where X and Y have an unknown common scale parameter and follow the inverse Lomax distribution. Using Bayesian and non-Bayesian approaches, we discuss this issue when both stress and strength are expressed in terms of lower record values. The parametric bootstrapping techniques of R are taken into consideration. The stress-strength reliability estimator is investigated using uniform and gamma priors with several loss functions. Based on the proposed loss functions, the reliability R is estimated using Bayesian analyses with Gibbs and Metropolis-Hasting samplers. Monte Carlo simulation studies and real-data-based examples are also performed to analyze the behavior of the proposed estimators. We analyze electrical insulating fluids, particularly those used in transformers, for data sets using the stress-strength model. In conclusion, as expected, the study's results showed that the mean squared error values decreased as the record number increased. In most cases, Bayesian estimates under the precautionary loss function are more suitable in terms of simulation conclusions than other specified loss functions.

Electricity Demand Forecasting based on Support Vector Regression (Support Vector Regression에 기반한 전력 수요 예측)

  • Lee, Hyoung-Ro;Shin, Hyun-Jung
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

A model of predicting performance of Olympic female weightlifters using time series analysis

  • Won, Jin-hee;Cho, In-ho
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.216-222
    • /
    • 2020
  • The purpose of this study was to predict the performance of female weightlifters using time series analysis. Based on this purpose, a time series analysis was used to calculate the performance prediction model for women(58kg) among the domestic women weightlifters who participated in the Olympics. As a result of creating time series data based on 10 years of record and then evaluating the sequential charts of each athlete group, the female athletes' records did not show any seasonality or difference. In addition, after examining the independence of the data through the creation of a time series model, it was shown that the models produced conformed to the criteria for compliance and that there was no difference in the data, but there was a trend. Accordingly, Holt linear trend analysis of the exponential smoothing model was applied. As a result of deriving the prediction model of the athletes through this process, it was found that the women (58kg) who participated in the Olympics continued to improve within the range of 166.11kg to 184.1kg.

An Equation Model Development and Test based on Health Belief Model Regarding Osteoporosis Prevention Behaviors among Postmenopausal Women (건강신념 모형 기반 폐경 여성의 골다공증 예방행위 모형 개발 및 검정)

  • Jang, Hyun-Jung;Ahn, Sukhee
    • Korean Journal of Adult Nursing
    • /
    • v.27 no.6
    • /
    • pp.624-633
    • /
    • 2015
  • Purpose: This study was to develop and test a theoretical model based on the revised health belief model explaining osteoporosis prevention behaviors among postmenopausal women under 65. Methods: This secondary data analysis included 342 postmenopausal women under 65 from original data sources of a total of 734 women. The measured instruments were scales for osteoporosis awareness, osteoporosis health belief scale (benefit, barrier, susceptibility, severity, and health motivation), self-efficacy, and osteoporosis prevention behaviors. Data were analyzed using SPSS/WIN 20.0 and AMOS 20.0. Results: The mean age of the subjects was 55.2 years and the mean age of menopause was 51.10. The hypothetical model of osteoporosis prevention behaviors was relatively fit. Osteoporosis prevention behaviors were significantly explained up to 62% by expectation factors (relative benefit, self-efficacy, health motivation) and modifying factors(knowledge only). Expectation factors of health belief had a mediation effect between modifying factors and prevention behaviors. Conclusion: This study partially supported the revised health belief model for explaining osteoporosis prevention behaviors. It provides a basis for developing an educational program focusing on expectation factors and knowledge with the aim of behavioral changes for osteoporosis prevention.

Development of Productivity-based Estimating Tool for Fuel Use and Emissions from Earthwork Construction Activities

  • Hajji, Apif M.;Lewis, Michael Phil
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.58-65
    • /
    • 2013
  • Earthwork activities are typically performed by heavy duty diesel (HDD) construction equipment that consumes large quantities of diesel fuel use and emits large quantities of pollutants, including nitrogen oxides (NOx), particulate matters (PM), hydrocarbon (HC), carbon monoxide (CO), and carbon dioxide ($CO_2$). This paper presents the framework for a model that can be used to estimate the production rate, activity duration, total fuel use, and total pollutants emissions for earthwork activities. A case study and sensitivity analysis for an excavator performing excavations are presented. The tool is developed by combining the multiple linear regressions (MLR) approach for modeling the productivity with the EPA's NONROAD model. The excavator data from RSMeans Heavy Construction Data were selected to build the productivity model, and emission factors of all type of pollutants from NONROAD model were used to estimate the total fuel use and emissions. The MLR model for the productivity rate can explain 92% of the variability in the data. Based on the model, the fuel use and emissions of excavator increase as the trench depth increase, but as the bucket size increase, the fuel use and emissions decrease.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

Nonlinear structural finite element model updating with a focus on model uncertainty

  • Mehrdad, Ebrahimi;Reza Karami, Mohammadi;Elnaz, Nobahar;Ehsan Noroozinejad, Farsangi
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.549-580
    • /
    • 2022
  • This paper assesses the influences of modeling assumptions and uncertainties on the performance of the non-linear finite element (FE) model updating procedure and model clustering method. The results of a shaking table test on a four-story steel moment-resisting frame are employed for both calibrations and clustering of the FE models. In the first part, simple to detailed non-linear FE models of the test frame is calibrated to minimize the difference between the various data features of the models and the structure. To investigate the effect of the specified data feature, four of which include the acceleration, displacement, hysteretic energy, and instantaneous features of responses, have been considered. In the last part of the work, a model-based clustering approach to group models of a four-story frame with similar behavior is introduced to detect abnormal ones. The approach is a composition of property derivation, outlier removal based on k-Nearest neighbors, and a K-means clustering approach using specified data features. The clustering results showed correlations among similar models. Moreover, it also helped to detect the best strategy for modeling different structural components.

Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm (순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델)

  • Hyeon-Seok JEONG;Jong-Hyeok RYU;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

Integration of CAE Data Management with PLM by using Product Views (제품관점을 이용한 CAE 자료관리와 PLM 통합)

  • Do, Nam-Chul;Yang, Young-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.527-533
    • /
    • 2008
  • This paper proposes a product data model and associated process for CAE activities in context of integrated product development. The data model and process enable Product Lifecycle Management(PLM) systems to integrate currently separated CAE activities into the main product development process. The product view concept in the proposed product data model supports independent CAE activities including analysis of various alternatives based on shared product structures with design departments and seamless translation of the CAE result to design product views. The proposed model is validated through an implementation of a prototype PLM system that can integrate and synchronize CAE process with the company-wide product development process.

Performance Evaluation of LSTM-based PM2.5 Prediction Model for Learning Seasonal and Concentration-specific Data (계절별 데이터와 농도별 데이터의 학습에 대한 LSTM 기반의 PM2.5 예측 모델 성능 평가)

  • Yong-jin Jung;Chang-Heon Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.149-154
    • /
    • 2024
  • Research on particulate matter is advancing in real-time, and various methods are being studied to improve the accuracy of prediction models. Furthermore, studies that take into account various factors to understand the precise causes and impacts of particulate matter are actively being pursued. This paper trains an LSTM model using seasonal data and another LSTM model using concentration-based data. It compares and analyzes the PM2.5 prediction performance of the two models. To train the model, weather data and air pollutant data were collected. The collected data was then used to confirm the correlation with PM2.5. Based on the results of the correlation analysis, the data was structured for training and evaluation. The seasonal prediction model and the concentration-specific prediction model were designed using the LSTM algorithm. The performance of the prediction model was evaluated using accuracy, RMSE, and MAPE. As a result of the performance evaluation, the prediction model learned by concentration had an accuracy of 91.02% in the "bad" range of AQI. And overall, it performed better than the prediction model trained by season.