• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.049 seconds

A Resource Allocation Model for Data QC Activities Using Cost of Quality (품질코스트를 이용한 데이터 QC 활동의 자원할당 모형 연구)

  • Lee, Sang-Cheol;Shin, Wan-Seon
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.128-138
    • /
    • 2011
  • This research proposes a resource allocation model of Data QC (Quality Control) activities using COQ (Cost of Quality). The model has been developed based on a series of research efforts such as COQ classifications, weight determination of Data QC activities, and an aggregation approach between COQ and Data QC activities. In the first stage of this research, COQ was divided into the four typical classifications (prevention costs, appraisal costs, internal failure costs and external failure costs) through the opinions from five professionals in Data QC. In the second stage, the weights of Data QC activities were elicited from the field professionals. An aggregation model between COQ and Data QC activities has been then proposed to help the practitioners make a resource allocation strategy. DEA (Data Envelopment Analysis) was utilized for locating efficient decision points. The proposed resource allocation model has been validated using the case of Korea national defense information system. This research is unique in that it applies the concept of COQ to the data management for the first time and that it demonstrates a possible contribution to a real world case for budget allocation of national defense information.

Frequent Items Mining based on Regression Model in Data Streams (스트림 데이터에서 회귀분석에 기반한 빈발항목 예측)

  • Lee, Uk-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.147-158
    • /
    • 2009
  • Recently, the data model in stream data environment has massive, continuous, and infinity properties. However the stream data processing like query process or data analysis is conducted using a limited capacity of disk or memory. In these environment, the traditional frequent pattern discovery on transaction database can be performed because it is difficult to manage the information continuously whether a continuous stream data is the frequent item or not. In this paper, we propose the method which we are able to predict the frequent items using the regression model on continuous stream data environment. We can use as a prediction model on indefinite items by constructing the regression model on stream data. We will show that the proposed method is able to be efficiently used on stream data environment through a variety of experiments.

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.

A Study on the LOD(Level of Detail) Model for Applications based on Indoor Space Data (실내공간 데이터 기반의 응용 서비스를 위한 세밀도 모델에 관한 연구)

  • Kang, Hye-Young;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.143-151
    • /
    • 2014
  • As the interest in indoor space increases, the demands for various services based on indoor space is increasing. With the demands, to construct spatial information for indoor space is also required, but there is not defined the LOD(Level of Detail) for indoor spatial data. Therefore, in this paper we classified data for indoor space data construction, and then we defined the accuracy and detail about the level of detail to provide suitable application services according to the type and representation method of each data. Most previous researches are focus on the geometrical representation, but in this paper we define a indoor LOD model based on type and representation method of data. In addition, we present applicable services with proposed LOD model and suggest a guideline for construction and application of indoor space.

Implementation of Algebra and Data Model based on a Directed Graph for XML (방향 그래프 기반 XML 데이터 모델과 대수 구현)

  • Park, Seong-Hui;Choe, Eun-Seon;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.799-812
    • /
    • 2001
  • As XML become more popular for encoding data and exchanging format on the web, recent work on processing XML Document in DBMS has been performed. However, there is no formal data model for XML, and there is lack of research on XML algebra for processing complex XML query and even the mediators have many restrictions. Therefore, this paper proposes formal data model and algebra based on directed edge labeled graph for XML query. To implement algebra, not only algorithms of operation for algebra are presented, but also they are implemented using access method and path index based on RDBMS or ORDBMS. In particular, experiments to show the effectiveness of the implemented algebra are performed on XML documents on EST data which are semistructured data.

  • PDF

Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk (건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발)

  • Kang, Donguk;Cho, Mingeon;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.841-849
    • /
    • 2023
  • Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.

Non-self-intersecting Multiresolution Deformable Model (자체교차방지 다해상도 변형 모델)

  • Park, Ju-Yeong;Kim, Myeong-Hui
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • This paper proposes a non-self-intersecting multiresolution deformable model to extract and reconstruct three-dimensional boundaries of objects from volumetric data. Deformable models offer an attractive method for extracting and reconstructing the boundary surfaces. However, convensional deformable models have three limitations- sensitivity to model initialization, difficulties in dealing with severe object concavities, and model self-intersections. We address the initialization problem by multiresolution model representation, which progressively refines the deformable model based on multiresolution volumetric data in order to extract the boundaries of the objects in a coarse-to-fine fashion. The concavity problem is addressed by mesh size regularization, which matches its size to the unit voxel of the volumetric data. We solve the model self-intersection problem by including a non-self-intersecting force among the customary internal and external forces in the physics-based formulation. This paper presents results of applying our new deformable model to extracting a sphere surface with concavities from a computer-generated volume data and a brain cortical surface from a MR volume data.

  • PDF

Dam Inflow Forecasting for Short Term Flood Based on Neural Networks in Nakdong River Basin (신경망을 이용한 낙동강 유역 홍수기 댐유입량 예측)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.67-75
    • /
    • 2004
  • In this study, real-time forecasting model(Neural Dam Inflow Forecasting Model; NDIFM) based on neural network to predict the dam inflow which is occurred by flood runoff is developed and applied to check its availability for the operation of multi-purpose reservoir Developed model Is applied to predict the flood Inflow on dam Nam-Gang in Nak-dong river basin where the rate of flood control dependent on reservoir operation is high. The input data for this model are average rainfall data composed of mean areal rainfall of upstream basin from dam location, observed inflow data, and predicted inflow data. As a result of the simulation for flood inflow forecasting, it is found that NDIFM-I is the best predictive model for real-time operation. In addition, the results of forecasting used on NDIFM-II and NDIFM-III are not bad and these models showed wide range of applicability for real-time forecasting. Consequently, if the quality of observed hydrological data is improved, it is expected that the neural network model which is black-box model can be utilized for real-time flood forecasting rather than conceptual models of which physical parameter is complex.

Land Use and Land Cover Mapping from Kompsat-5 X-band Co-polarized Data Using Conditional Generative Adversarial Network

  • Jang, Jae-Cheol;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.111-126
    • /
    • 2022
  • Land use and land cover (LULC) mapping is an important factor in geospatial analysis. Although highly precise ground-based LULC monitoring is possible, it is time consuming and costly. Conversely, because the synthetic aperture radar (SAR) sensor is an all-weather sensor with high resolution, it could replace field-based LULC monitoring systems with low cost and less time requirement. Thus, LULC is one of the major areas in SAR applications. We developed a LULC model using only KOMPSAT-5 single co-polarized data and digital elevation model (DEM) data. Twelve HH-polarized images and 18 VV-polarized images were collected, and two HH-polarized images and four VV-polarized images were selected for the model testing. To train the LULC model, we applied the conditional generative adversarial network (cGAN) method. We used U-Net combined with the residual unit (ResUNet) model to generate the cGAN method. When analyzing the training history at 1732 epochs, the ResUNet model showed a maximum overall accuracy (OA) of 93.89 and a Kappa coefficient of 0.91. The model exhibited high performance in the test datasets with an OA greater than 90. The model accurately distinguished water body areas and showed lower accuracy in wetlands than in the other LULC types. The effect of the DEM on the accuracy of LULC was analyzed. When assessing the accuracy with respect to the incidence angle, owing to the radar shadow caused by the side-looking system of the SAR sensor, the OA tended to decrease as the incidence angle increased. This study is the first to use only KOMPSAT-5 single co-polarized data and deep learning methods to demonstrate the possibility of high-performance LULC monitoring. This study contributes to Earth surface monitoring and the development of deep learning approaches using the KOMPSAT-5 data.

Energy Use Prediction Model in Digital Twin

  • Wang, Jihwan;Jin, Chengquan;Lee, Yeongchan;Lee, Sanghoon;Hyun, Changtaek
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1256-1263
    • /
    • 2022
  • With the advent of the Fourth Industrial Revolution, the amount of energy used in buildings has been increasing due to changes in the energy use structure caused by the massive spread of information-oriented equipment, climate change and greenhouse gas emissions. For the efficient use of energy, it is necessary to have a plan that can predict and reduce the amount of energy use according to the type of energy source and the use of buildings. To address such issues, this study presents a model embedded in a digital twin that predicts energy use in buildings. The digital twin is a system that can support a solution of urban problems through the process of simulations and analyses based on the data collected via sensors in real-time. To develop the energy use prediction model, energy-related data such as actual room use, power use and gas use were collected. Factors that significantly affect energy use were identified through a correlation analysis and multiple regression analysis based on the collected data. The proof-of-concept prototype was developed with an exhibition facility for performance evaluation and validation. The test results confirm that the error rate of the energy consumption prediction model decreases, and the prediction performance improves as the data is accumulated by comparing the error rates of the model. The energy use prediction model thus predicts future energy use and supports formulating a systematic energy management plan in consideration of characteristics of building spaces such as the purpose and the occupancy time of each room. It is suggested to collect and analyze data from other facilities in the future to develop a general-purpose energy use prediction model.

  • PDF