• Title/Summary/Keyword: data-based model

Search Result 21,096, Processing Time 0.049 seconds

The Design of Geographic Information System based on Object Grouping (객체그룹화에 기반한 지리정보시스템의 설계)

  • Kang, Shin-Bong;Joo, In-Hak;Choy, Yoon-Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.45-54
    • /
    • 1995
  • The relational data model is based on mathematical concept of relations and is well formulated, and so there have been numerous practical applications and studies. However, it is not suitable for representing a complex hierarchical structure, which is the characteristic of most geographical objects. On the other hand, the object-oriented data model can naturally represent a complex hierarchical structure, but there is a difficulty in sharing data with the relational data model which is currently used by most commercial GIS users. Also it has no standard query language with standardized format. In this paper, we propose an Object Grouping based on RDBMS to use data from a traditional relational data model while supporting various concepts of the object-oriented data model, and we applied this data model to design a GIS.

  • PDF

Optimal Identification of Nonlinear Process Data Using GAs-based Fuzzy Polynomial Neural Networks (유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크를 이용한 비선형 공정데이터의 최적 동정)

  • Lee, In-Tae;Kim, Wan-Su;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.6-8
    • /
    • 2005
  • In this paper, we discuss model identification of nonlinear data using GAs-based Fuzzy Polynomial Neural Networks(GAs-FPNN). Fuzzy Polynomial Neural Networks(FPNN) is proposed model based Group Method Data Handling(GMDH) and Neural Networks(NNs). Each node of FPNN is expressed Fuzzy Polynomial Neuron(FPN). Network structure of nonlinear data is created using Genetic Algorithms(GAs) of optimal search method. Accordingly, GAs-FPNN have more inflexible than the existing models (in)from structure selecting. The proposed model select and identify its for optimal search of Genetic Algorithms that are no. of input variables, input variable numbers and consequence structures. The GAs-FPNN model is select tuning to input variable number, number of input variable and the last part structure through optimal search of Genetic Algorithms. It is shown that nonlinear data model design using Genetic Algorithms based FPNN is more usefulness and effectiveness than the existing models.

  • PDF

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.

A Study on the Time-Dependent Bonus-Malus System in Automobile Insurance

  • Kang, Jung-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1147-1157
    • /
    • 2005
  • Bonus-Malus system is generally constructed based on claim frequency and Bayesian credibility model is used to represent claim frequency distribution. However, there is a problem with traditionally used credibility model for the purpose of constructing bonus-malus system. In traditional Bonus-Malus system adopted credibility model, individual estimates of premium rates for insureds are determined based solely on the total number of claim frequency without considering when those claims occurred. In this paper, a new model which is a modification of structural time series model applicable to counting time series data are suggested. Based on the suggested model relatively higher premium rates are charged to insured with more claim records.

  • PDF

Determination of the Storage Constant for the Clark Model by based on the Observed Rainfall-Runoff Data (강우-유출 자료에 의한 Clark 모형의 저류상수 결정)

  • Ahn, Tae-Jin;Choi, Kwang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1454-1458
    • /
    • 2007
  • The determination of feasible design flood is the most important to control flood damage in river management. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by engineer's empirical sense. Storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood. This study is to estimate the storage constant based on the observed rainfall-runoff data at the three stage stations in the Imjin river basin and the three stage stations in the Ansung river basin. In this study four methods have been proposed to estimate the storage constant from observed rainfall-runoff data. The HEC-HMS model has been adopted to execute the sensitivity of storage constant. A criteria has been proposed to determine storage constant based on the results of the observed hydrograph and the HEC-HMS model.

  • PDF

A Prediction Model Based on Relevance Vector Machine and Granularity Analysis

  • Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2016
  • In this paper, a yield prediction model based on relevance vector machine (RVM) and a granular computing model (quotient space theory) is presented. With a granular computing model, massive and complex meteorological data can be analyzed at different layers of different grain sizes, and new meteorological feature data sets can be formed in this way. In order to forecast the crop yield, a grey model is introduced to label the training sample data sets, which also can be used for computing the tendency yield. An RVM algorithm is introduced as the classification model for meteorological data mining. Experiments on data sets from the real world using this model show an advantage in terms of yield prediction compared with other models.

Applying Game Data Elements to SCORM Data Model (게임 데이터 요소의SCORM 데이터 모델에의 적용 방안)

  • Choi, Yong Suk
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.2
    • /
    • pp.65-75
    • /
    • 2007
  • SCORM is an implementation reference model and also a de-facto standard technology designed for developing e-learning contents and systems effectively. For recent years, as many researchers have been more interested than ever in game based learning, ADL as a SCORM developer, has initiated a basic research on game based learning. However, the game based learning research of ADL has been performed conceptually as well as separately from SCORM so that it lacks in efforts for developing a game based learning SCORM content by incorporating concrete game data into SCORM data model. In this paper, we first present a method for applying game data elements to SCORM data Model, and then illustrate a game based learning SCORM content developed by our method.

  • PDF

Modelling Online Word-of-Mouth Effect on Korean Box-Office Sales Based on Kernel Regression Model

  • Park, Si-Yun;Kim, Jin-Gyo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.995-1004
    • /
    • 2007
  • In this paper, we analyse online word-of-mouth and Korean box-office sales data based on kernel regression method. To do this, we consider the regression model with mixed-data and apply the least square cross-validation method proposed by Li and Racine (2004) to the model. We found the box-office sales can be explained by volume of online word-of-mouth and the characteristics of the movies.

  • PDF

System Reliability Estimation in Bivariate Pareto Model Affected by Common Stress : Bivariate Random Censored Data Case

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.791-799
    • /
    • 2005
  • We consider two components parallel system in which the lifetimes have the bivariate Pareto model with bivariate random censored data. We assume that bivariate Pareto model is affected by common stress which is independent of the lifetimes of the components. We obtain estimators for the system reliability based on likelihood function and relative frequency. Also we construct approximated confidence intervals for the reliability based on maximum likelihood estimator and relative frequency estimator, respectively. Finally we present a numerical study.

  • PDF

Product Data Model for Supporting Integrated Product, Process, and Service Design (제품, 공정, 서비스 통합 설계를 지원하는 제품자료모델)

  • Do, Nam-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • The current market preassure of least environmental effects of products needs companies to consider whole life cycle of their products during their design phase. To support the integrated and collaborative development of the products, this paper proposed product data model for extended Product Data Managemen (PDM) that can support integrated design of product, manufacturing process, and customer services, based on the consistent and comprehensive PDM databases. The product data model enables design, manufacturing, and service engineers to express their products and services efficiently, with sharing consistent product data, engineering changes, and both economical and environmental evaluations on their design alternatives. The product data model was implemented with a prototype PDM system, and validated through an example product. The result shows that the PDM based on the proposed product data model can support the integrated design for products, manufacturing process, and customer services, and provide an environment of collaborative product development for design, manufacturing and service engineers.