• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.043 seconds

The Data Model based Design and Implementation of a Shopping Mall System (쇼핑몰 시스템의 데이터 모델 기반 설계 및 구현)

  • Yeo, Jeong-Mo;Shin, Ue-Jung;Zheng, Bao-Wei
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.273-288
    • /
    • 2009
  • Because of a number of internet concurrent users and the diversity of goods and data items to be managed, the web sites for internet shopping mall are changed and their management application are updated frequently. So the existing internet shopping mall systems to be implemented by process-based design have the bad adaptability, then we have the difficulty for its maintenance and the overhead cost owing to a variety of changes in the future. Therefore to improve on its adaptability and maintenance, in this study, we design and implement the natural soap shopping mall system with the data model based method. In this paper, the data model designed for the system is considered requirements in the future, and in the view of DA(Data Architecture) it is designed and implemented including the data standardization, then the system has the improved adaptability and maintenance.

Early Prediction Model of Student Performance Based on Deep Neural Network Using Massive LMS Log Data (대용량 LMS 로그 데이터를 이용한 심층신경망 기반 대학생 학업성취 조기예측 모델)

  • Moon, Kibum;Kim, Jinwon;Lee, Jinsook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.1-10
    • /
    • 2021
  • Log data accumulated in the Learning Management System (LMS) provide high-quality information for the learning process of students. Until now, various studies have been conducted to predict students' academic achievement using LMS log data. However, previous studies were based on relatively small sample sizes of students and courses, limiting the possibility of generalization. This study developed and validated a deep neural network model for the early prediction of academic achievement of college students using massive LMS log data. To this end, we used 78,466,385 cases of LMS log data and 165,846 cases of grade data. The proposed model predicted the excellent-grade students with a high level of accuracy from the beginning of the semester. Meanwhile, the prediction accuracy for the moderate and underachieving groups was relatively low, but the accuracy improved as the time points of the prediction were delayed. This study is meaningful in that we developed an early prediction model based on a deep neural network with sufficient accuracy for practical utilization by only using LMS log data.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

Active Suspension System Control Using Optimal Control & Neural Network (최적제어와 신경회로망을 이용한 능동형 현가장치 제어)

  • 김일영;정길도;이창구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

A Study on Headway Distribution Models of Rural Two Lane Roads (지방부 2차로도로의 차두시간 분포 모델에 관한 연구)

  • Moon, Jaepil;Kim, Dongnyong
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • PURPOSES : This study was done to model the headway distribution of rural two lane roads. METHODS : Time headway data for the various level of traffic volumes was measured in twelve sites. Based on the time headway data, existing seven mathematical models were evaluated and selected by comparing graphically the measured and theoretical distributions and conducting the Chi-square test. RESULTS : The results show that both the Schul model and Composite Model were the most appropriate models of the models. Based on the measured time-headway distributions, this study proposed a new headway distribution model by the shift of the Schul model. CONCLUSIONS : The shifted Schul model has the ability to describe time headway distirbutons for random, intermediate, and constant-headway states.

Prediction model of service life for tunnel structures in carbonation environments by genetic programming

  • Gao, Wei;Chen, Dongliang
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.373-389
    • /
    • 2019
  • It is important to study the problem of durability for tunnel structures. As a main influence on the durability of tunnel structures, carbonation-induced corrosion is studied. For the complicated environment of tunnel structures, based on the data samples from real engineering examples, the intelligent method (genetic programming) is used to construct the service life prediction model of tunnel structures. Based on the model, the prediction of service life for tunnel structures in carbonation environments is studied. Using the data samples from some tunnel engineering examples in China under carbonation environment, the proposed method is verified. In addition, the performance of the proposed prediction model is compared with that of the artificial neural network method. Finally, the effect of two main controlling parameters, the population size and sample size, on the performance of the prediction model by genetic programming is analyzed in detail.

The Study of Predictive Diagnosis Technology Development Status and Promotion Plan for Reactor Coolant Pump (원자로냉각재펌프 예측진단 기술개발 현황 및 추진방안)

  • Hee Chan Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.44-51
    • /
    • 2023
  • The RCP is one of the main components in nuclear power plants and plays an important role in circulating coolant to the RCS system. Currently, nuclear plants are monitored using various monitoring systems. However, since they operate independently according to their functional purpose, it is not able to analyze vibration and operation/performance information comprehensively, and thus failure diagnosis accuracy is limited. In addition, these systems do not provide some important information (such as fault type, parts and cause) necessary for emergency actions, but provide only alarm information. To improve these technical problems, this study proposes a diagnosis technique (M/L, Rule-based model, Data-driven model, Narrow band model) and methodology for comprehensive analysis.

A study of the alert decision model in sensor web enablement (SWE 에서 비상 판단 모델 연구)

  • Lee, Chang-yeol
    • Journal of the Society of Disaster Information
    • /
    • v.5 no.2
    • /
    • pp.76-85
    • /
    • 2009
  • SWE(Sensor Web Enablement) is the standard platform of OGC for the sensor data service. SWE is only focusing in the data transmission protocols, but supporting the semantic decision. Sensor data service is the decision service of the status whether is on normal or not. In this study, we study the semantic decision model of the sensor data. It can support the context-aware service based on the decision information.

  • PDF

Nonlinear boundary parameter identification of bridges based on temperature-induced strains

  • Wang, Zuo-Cai;Zha, Guo-Peng;Ren, Wei-Xin;Hu, Ke;Yang, Hao
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.563-573
    • /
    • 2018
  • Temperature-induced responses, such as strains and displacements, are related to the boundary conditions. Therefore, it is required to determine the boundary conditions to establish a reliable bridge model for temperature-induced responses analysis. Particularly, bridge bearings usually present nonlinear behavior with an increase in load, and the nonlinear boundary conditions cause significant effect on temperature-induced responses. In this paper, the bridge nonlinear boundary conditions were simulated as bilinear translational or rotational springs, and the boundary parameters of the bilinear springs were identified based on the measured temperature-induced responses. First of all, the temperature-induced responses of a simply support beam with nonlinear translational and rotational springs subjected to various temperature loads were analyzed. The simulated temperature-induced strains and displacements were assumed as measured data. To identify the nonlinear translational and rotational boundary parameters of the bridge, the objective function based on the temperature-induced responses is then created, and the nonlinear boundary parameters were further identified by using the nonlinear least squares optimization algorithm. Then, a beam structure with nonlinear translational and rotational springs was simulated as a numerical example, and the nonlinear boundary parameters were identified based on the proposed method. The numerical results show that the proposed method can effectively identify the parameters of the nonlinear boundary conditions. Finally, the boundary parameters of a real arch bridge were identified based on the measured strain data and the proposed method. Since the bearings of the real bridge do not perform nonlinear behavior, only the linear boundary parameters of the bridge model were identified. Based on the bridge model and the identified boundary conditions, the temperature-induced strains were recalculated to compare with the measured strain data. The recalculated temperature-induced strains are in a good agreement with the real measured data.