• Title/Summary/Keyword: data-based model

Search Result 21,105, Processing Time 0.051 seconds

Development of a Shoe Recommendation Model for Matching Outfits Using Generative Artificial Intelligence (생성형 인공지능을 활용한 신발 추천 모델 개발)

  • Jun Woo CHOI
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.7-10
    • /
    • 2023
  • This study proposes an AI-based shoe recommendation model based on user clothing image data to solve the problem of the global fashion industry, which is worsening due to factors such as the economic downturn. Shoes are an important part of modern fashion, and this research aims to improve user satisfaction and contribute to economic growth through a generative AI-based shoe recommendation service. By utilizing generative AI in the personalized consumer market, we show the feasibility, efficiency, and improvements through an accessible web-based implementation. In conclusion, this study provides insights to help fulfill consumer needs in the ever-changing fashion market by implementing a generative AI-based shoe recommendation model.

Similar Contents Recommendation Model Based On Contents Meta Data Using Language Model (언어모델을 활용한 콘텐츠 메타 데이터 기반 유사 콘텐츠 추천 모델)

  • Donghwan Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.27-40
    • /
    • 2023
  • With the increase in the spread of smart devices and the impact of COVID-19, the consumption of media contents through smart devices has significantly increased. Along with this trend, the amount of media contents viewed through OTT platforms is increasing, that makes contents recommendations on these platforms more important. Previous contents-based recommendation researches have mostly utilized metadata that describes the characteristics of the contents, with a shortage of researches that utilize the contents' own descriptive metadata. In this paper, various text data including titles and synopses that describe the contents were used to recommend similar contents. KLUE-RoBERTa-large, a Korean language model with excellent performance, was used to train the model on the text data. A dataset of over 20,000 contents metadata including titles, synopses, composite genres, directors, actors, and hash tags information was used as training data. To enter the various text features into the language model, the features were concatenated using special tokens that indicate each feature. The test set was designed to promote the relative and objective nature of the model's similarity classification ability by using the three contents comparison method and applying multiple inspections to label the test set. Genres classification and hash tag classification prediction tasks were used to fine-tune the embeddings for the contents meta text data. As a result, the hash tag classification model showed an accuracy of over 90% based on the similarity test set, which was more than 9% better than the baseline language model. Through hash tag classification training, it was found that the language model's ability to classify similar contents was improved, which demonstrated the value of using a language model for the contents-based filtering.

Kernel Regression Model based Gas Turbine Rotor Vibration Signal Abnormal State Analysis (커널회귀 모델기반 가스터빈 축진동 신호이상 분석)

  • Kim, Yeonwhan;Kim, Donghwan;Park, SunHwi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • In this paper, the kernel regression model is applied for the case study of gas turbine abnormal state analysis. In addition to vibration analysis at the remote site, the kernel regression model technique can is useful for analyzing abnormal state of rotor vibration signals of gas turbine in power plant. In monitoring based on data-driven techniques correlated measurements, the fault free training data of shaft vibration obtained during normal operations of gas turbine are used to develop a empirical model based on auto-associative kernel regression. This data-driven model can be used to predict virtual measurements, which are compared with real-time data, generating residuals. Any faults in the system may cause statistically abnormal changes in these residuals and could be detected. As the result, the kernel regression model provides information that can distinguish anomalies such as sensor failure in a shaft vibration signal.

The Aircraft-level Simulation Environment for Functional Verification of the Air Data Computer (대기자료 컴퓨터 (Air Data Computer) 기능검증을 위한 항공기 수준의 시뮬레이션 환경)

  • Lee, Dong-Woo;Lee, Jae-Yong;Na, Jong-Whoa
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2018
  • In recent years, model-based design techniques have been used as a way to support cost reduction and safety certification in the development of avionics systems. In order to support performance analysis and safety analysis of aircraft and avionics equipment (item) using model based design, we developed a multi-domain simulation environment that inter-works with heterogeneous simulators. We present a multi-domain simulation environment that can verify air data computers and integrated multi-function probes at the aircraft level. The model was developed by Simulink and the flight simulator X-Plane 10 was used to verify the model at the aircraft level. Avionics model functions were tested at the aircraft level and the air data errors of the model and flight simulator were measured within 0.1%.

A study on Convergent & Adaptive Quality Analysis using DQnA model (데이터 품질 분석 모델(DQnA)을 이용한 융합적·적응적 품질 분석에 관한 연구)

  • Kim, Yong-Won
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.21-25
    • /
    • 2014
  • Now, almost enterprise is applying data analysis method using the information systems on based information technology. The data analysis is focusing on the Quality of the data affecting the decision-making of various companies. This is the result of the data quality is due to the important role in the various parts as well as the effective operation of the enterprise. In this study, we describe about the data quality assessment models that are currently being studied. Based on this, we describe about the adaptive DQnA model being utilized for data quality analysis, and discuss about the quality analysis using this method.

River Water Level Prediction Method based on LSTM Neural Network

  • Le, Xuan Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.147-147
    • /
    • 2018
  • In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.

  • PDF

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.

DATA MININING APPROACH TO PARAMETRIC COST ESTIMATE IN EARLY DESIGN STAGE AND ANALYTICAL CHARACTERIZATION ON OLAP (ON-LINE ANALYTICAL PROCESSING)

  • JaeHo Cho;HyunKyun Jung;JaeYoul Chun
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.176-181
    • /
    • 2011
  • A role of cost modeler is that of facilitating design process by the systematic application of cost factors so as to maintain sensible and economic relationships between cost, quantity, utility and appearance. These relationships help to achieve the client's requirements within an agreed budget. The purpose of this study is to develop a parametric cost estimating model for the early design stage by using the multi-dimensional system of OLAP (On-line Analytical Processing) based on the case of quantity data related to architectural design features. The parametric cost estimating models have been adopted to support decision making in the early design stage. These models typically use a similar instance or a pattern of historical case. In order to effectively use this type of data model, it is required to set data classification and prediction methods. One of the methods is to find the similar class in line with attribute selection measure in the multi-dimensional data model. Therefore, this research is to analyze the relevance attribute influenced by architectural design features with the subject of case-based quantity data used for the parametric cost estimating model. The relevance attributes can be analyzed by Analytical Characterization. It helps determine what attributes to be included in the OLAP multi-dimension.

  • PDF

CBIR-based Data Augmentation and Its Application to Deep Learning (CBIR 기반 데이터 확장을 이용한 딥 러닝 기술)

  • Kim, Sesong;Jung, Seung-Won
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.403-408
    • /
    • 2018
  • Generally, a large data set is required for learning of deep learning. However, since it is not easy to create large data sets, there are a lot of techniques that make small data sets larger through data expansion such as rotation, flipping, and filtering. However, these simple techniques have limitation on extendibility because they are difficult to escape from the features already possessed. In order to solve this problem, we propose a method to acquire new image data by using existing data. This is done by retrieving and acquiring similar images using existing image data as a query of the content-based image retrieval (CBIR). Finally, we compare the performance of the base model with the model using CBIR.

Daily Streamfiow Model based on the Soil Water (유역 토양 수분 추적에 의한 유출 모형)

  • 김태일;여재경;박승기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.61-72
    • /
    • 1991
  • A lumped deterministic model(DAWAST model) was developed to predict the daily streamflow. Since the streamflow is dominantly determined by the soil water storage in the watershed, the model takes the soil water accounting procedures which are based on three linear reservoirs representing the surface, unsaturated, and saturated soil layers. The variation of soil water storage in the unsaturated zone is traced from the soil water balance on a daily basis. DAWAST model consists of 5 parameters for water balance and 3 parameters for routing. A optimization technique of unconstrained nonlinear Simplex method was applied for the determination of the optimal parameters for water balance. Model verification was carried out to the 7 hydrologic watersheds with areas of 5.89-7,126km$^2$ and the results were generally satisfactory. The daily streamflow can be arbitrarily simulated with the input data of daily rainfall and pan evaporation by the DAWAST model at the station where the observed streamflow data of short periods are available to calibrate the model parameters.

  • PDF