• Title/Summary/Keyword: data-based model

Search Result 21,096, Processing Time 0.054 seconds

Sequence Anomaly Detection based on Diffusion Model (확산 모델 기반 시퀀스 이상 탐지)

  • Zhiyuan Zhang;Inwhee, Joe
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.2-4
    • /
    • 2023
  • Sequence data plays an important role in the field of intelligence, especially for industrial control, traffic control and other aspects. Finding abnormal parts in sequence data has long been an application field of AI technology. In this paper, we propose an anomaly detection method for sequence data using a diffusion model. The diffusion model has two major advantages: interpretability derived from rigorous mathematical derivation and unrestricted selection of backbone models. This method uses the diffusion model to predict and reconstruct the sequence data, and then detects the abnormal part by comparing with the real data. This paper successfully verifies the feasibility of the diffusion model in the field of anomaly detection. We use the combination of MLP and diffusion model to generate data and compare the generated data with real data to detect anomalous points.

Electric Power Demand Prediction Using Deep Learning Model with Temperature Data (기온 데이터를 반영한 전력수요 예측 딥러닝 모델)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.307-314
    • /
    • 2022
  • Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.

Model-free $H_{\infty}$ Control of Linear Discrete-time Systems using Q-learning and LMI Based on I/O Data (입출력 데이터 기반 Q-학습과 LMI를 이용한 선형 이산 시간 시스템의 모델-프리 $H_{\infty}$ 제어기 설계)

  • Kim, Jin-Hoon;Lewis, F.L.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1411-1417
    • /
    • 2009
  • In this paper, we consider the design of $H_{\infty}$ control of linear discrete-time systems having no mathematical model. The basic approach is to use Q-learning which is a reinforcement learning method based on actor-critic structure. The model-free control design is to use not the mathematical model of the system but the informations on states and inputs. As a result, the derived iterative algorithm is expressed as linear matrix inequalities(LMI) of measured data from system states and inputs. It is shown that, for a sufficiently rich enough disturbance, this algorithm converges to the standard $H_{\infty}$ control solution obtained using the exact system model. A simple numerical example is given to show the usefulness of our result on practical application.

A Logical Design Methodology for Relational Databases Using the MAO (Multiple Aspects-based Object) Model (MAO 모델을 사용한 관계 데이타베이스의 논리적 설계방법론)

  • Cho, Dong-Young;Baik, Doo-Kwon;Hwang, Chong-Sun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.49-64
    • /
    • 1991
  • In this paper, we present a stepwise design methodology for relational databases using a new conceptual data model, the MAO(Multiple Aspects-based Object) model. Our methodology consists two steps : first, data requirements are conceptualized using the MAO model with concepts such as objects types and aspect types : second, the MAO model is transformed into the third normal form inn the relational model supported by commercial DBMs. A top-down approach is used for the MAO modelling in the first, step, and the transformation process in the second step can be automated. Our methodology supports easier and more database design of real world than other methodologies using existing data models.

  • PDF

A Study on the Development of Phased Big Data Distribution Model Based on Big Data Distribution Ecology (빅데이터 유통 생태계에 기반한 단계별 빅데이터 유통 모델 개발에 관한 연구)

  • Kim, Shinkon;Lee, Sukjun;Kim, Jeonggon
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.95-106
    • /
    • 2016
  • The major thrust of this research focuses on the development of phased big data distribution model based on the big data ecosystem. This model consists of 3 phases. In phase 1, data intermediaries are participated in this model and transaction functions are provided. This system consists of general control systems, registrations, and transaction management systems. In phase 2, trading support systems with data storage, analysis, supply, and customer relation management functions are designed. In phase 3, transaction support systems and linked big data distribution portal systems are developed. Recently, emerging new data distribution models and systems are evolving and substituting for past data management system using new technology and the processes in data science. The proposed model may be referred as criteria for industrial standard establishment for big data distribution and transaction models in the future.

A Predictive Model of the Generator Output Based on the Learning of Performance Data in Power Plant (발전플랜트 성능데이터 학습에 의한 발전기 출력 추정 모델)

  • Yang, HacJin;Kim, Seong Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8753-8759
    • /
    • 2015
  • Establishment of analysis procedures and validated performance measurements for generator output is required to maintain stable management of generator output in turbine power generation cycle. We developed turbine expansion model and measurement validation model for the performance calculation of generator using turbine output based on ASME (American Society of Mechanical Engineers) PTC (Performance Test Code). We also developed verification model for uncertain measurement data related to the turbine and generator output. Although the model in previous researches was developed using artificial neural network and kernel regression, the verification model in this paper was based on algorithms through Support Vector Machine (SVM) model to overcome the problems of unmeasured data. The selection procedures of related variables and data window for verification learning was also developed. The model reveals suitability in the estimation procss as the learning error was in the range of about 1%. The learning model can provide validated estimations for corrective performance analysis of turbine cycle output using the predictions of measurement data loss.

Automated ground penetrating radar B-scan detection enhanced by data augmentation techniques

  • Donghwi Kim;Jihoon Kim;Heejung Youn
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.29-44
    • /
    • 2024
  • This research investigates the effectiveness of data augmentation techniques in the automated analysis of B-scan images from ground-penetrating radar (GPR) using deep learning. In spite of the growing interest in automating GPR data analysis and advancements in deep learning for image classification and object detection, many deep learning-based GPR data analysis studies have been limited by the availability of large, diverse GPR datasets. Data augmentation techniques are widely used in deep learning to improve model performance. In this study, we applied four data augmentation techniques (geometric transformation, color-space transformation, noise injection, and applying kernel filter) to the GPR datasets obtained from a testbed. A deep learning model for GPR data analysis was developed using three models (Faster R-CNN ResNet, SSD ResNet, and EfficientDet) based on transfer learning. It was found that data augmentation significantly enhances model performance across all cases, with the mAP and AR for the Faster R-CNN ResNet model increasing by approximately 4%, achieving a maximum mAP (Intersection over Union = 0.5:1.0) of 87.5% and maximum AR of 90.5%. These results highlight the importance of data augmentation in improving the robustness and accuracy of deep learning models for GPR B-scan analysis. The enhanced detection capabilities achieved through these techniques contribute to more reliable subsurface investigations in geotechnical engineering.

Analysis of low level cloud prediction in the KMA Local Data Assimilation and Prediction System(LDAPS) (기상청 국지예보모델의 저고도 구름 예측 분석)

  • Ahn, Yongjun;Jang, Jiwon;Kim, Ki-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.124-129
    • /
    • 2017
  • Clouds are an important factor in aircraft flight. In particular, a significant impact on small aircraft flying at low altitude. Therefore, we have verified and characterized the low level cloud prediction data of the Unified Model(UM) - based Local Data Assimilation and Prediction System(LDAPS) operated by KMA in order to develop cloud forecasting service and contents important for safety of low-altitude aircraft flight. As a result of the low level cloud test for seven airports in Korea, a high correlation coefficient of 0.4 ~ 0.7 was obtained for 0-36 leading time. Also, we found that the prediction performance does not decrease as the lead time increases. Based on the results of this study, it is expected that model-based forecasting data for low-altitude aviation meteorology services can be produced.

Extraction of specific common genetic network of side effect pair, and prediction of side effects for a drug based on PPI network

  • Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.115-123
    • /
    • 2016
  • In this study, we collect various side effect pairs which are appeared frequently at many drugs, and select side effect pairs that have higher severity. For every selected side effect pair, we extract common genetic networks which are shared by side effects' genes and drugs' target genes based on PPI(Protein-Protein Interaction) network. For this work, firstly, we gather drug related data, side effect data and PPI data. Secondly, for extracting common genetic network, we find shortest paths between drug target genes and side effect genes based on PPI network, and integrate these shortest paths. Thirdly, we develop a classification model which uses this common genetic network as a classifier. We calculate similarity score between the common genetic network and genetic network of a drug for classifying the drug. Lastly, we validate our classification model by means of AUC(Area Under the Curve) value.

A Design and Implementation of Worker Motion 3D Visualization Module Based on Human Sensor

  • Sejong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.109-114
    • /
    • 2024
  • In this paper, we design and implement a worker motion 3D visualization module based on human sensors. The three key modules that make up this system are Human Sensor Implementation, Data Set Creation, and Visualization. Human Sensor Implementation provides the functions of setting and installing the human sensor locations and collecting worker motion data through the human sensors. Data Set Creation offers functions for converting and storing motion data, creating near real-time worker motion data sets, and processing and managing sensor and motion data sets. Visualization provides functions for visualizing the worker's 3D model, evaluating motions, calculating loads, and managing large-scale data. In worker 3D model visualization, motion data sets (Skeleton & Position) are synchronized and mapped to the worker's 3D model, and the worker's 3D model motion animation is visualized by combining the worker's 3D model with analysis results. The human sensor-based worker motion 3D visualization module designed and implemented in this paper can be widely utilized as a foundational technology in the smart factory field in the future.