• Title/Summary/Keyword: data-based model

Search Result 21,096, Processing Time 0.061 seconds

Verification of the Suitability of Fine Dust and Air Quality Management Systems Based on Artificial Intelligence Evaluation Models

  • Heungsup Sim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.165-170
    • /
    • 2024
  • This study aims to verify the accuracy of the air quality management system in Yangju City using an artificial intelligence (AI) evaluation model. The consistency and reliability of fine dust data were assessed by comparing public data from the Ministry of Environment with data from Yangju City's air quality management system. To this end, we analyzed the completeness, uniqueness, validity, consistency, accuracy, and integrity of the data. Exploratory statistical analysis was employed to compare data consistency. The results of the AI-based data quality index evaluation revealed no statistically significant differences between the two datasets. Among AI-based algorithms, the random forest model demonstrated the highest predictive accuracy, with its performance evaluated through ROC curves and AUC. Notably, the random forest model was identified as a valuable tool for optimizing the air quality management system. This study confirms that the reliability and suitability of fine dust data can be effectively assessed using AI-based model performance evaluation, contributing to the advancement of air quality management strategies.

Motion Visualization of a Vehicle Driver Based on Virtual Reality (가상현실 기반에서 차량 운전자 거동의 가시화)

  • Jeong, Yun-Seok;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.201-209
    • /
    • 2003
  • Virtual human models are widely used to save time and expense in vehicle safety studies. A human model is an essential tool to visualize and simulate a vehicle driver in virtual environments. This research is focused on creation and application of a human model fer virtual reality. The Korean anthropometric data published are selected to determine basic human model dimensions. These data are applied to GEBOD, a human body data generation program, which computes the body segment geometry, mass properties, joints locations and mechanical properties. The human model was constituted using MADYMO based on data from GEBOD. Frontal crash and bump passing test were simulated and the driver's motion data calculated were transmitted into the virtual environment. The human model was organized into scene graphs and its motion was visualized by virtual reality techniques including OpenGL Performer. The human model can be controlled by an arm master to test driver's behavior in the virtual environment.

Design of Multiple Model Fuzzy Predictors using Data Preprocessing and its Application (데이터 전처리를 이용한 다중 모델 퍼지 예측기의 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.173-180
    • /
    • 2009
  • It is difficult to predict non-stationary or chaotic time series which includes the drift and/or the non-linearity as well as uncertainty. To solve it, we propose an effective prediction method which adopts data preprocessing and multiple model TS fuzzy predictors combined with model selection mechanism. In data preprocessing procedure, the candidates of the optimal difference interval are determined based on the correlation analysis, and corresponding difference data sets are generated in order to use them as predictor input instead of the original ones because the difference data can stabilize the statistical characteristics of those time series and better reveals their implicit properties. Then, TS fuzzy predictors are constructed for multiple model bank, where k-means clustering algorithm is used for fuzzy partition of input space, and the least squares method is applied to parameter identification of fuzzy rules. Among the predictors in the model bank, the one which best minimizes the performance index is selected, and it is used for prediction thereafter. Finally, the error compensation procedure based on correlation analysis is added to improve the prediction accuracy. Some computer simulations are performed to verify the effectiveness of the proposed method.

Comparison study of SARIMA and ARGO models for in influenza epidemics prediction

  • Jung, Jihoon;Lee, Sangyeol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.1075-1081
    • /
    • 2016
  • The big data analysis has received much attention from the researchers working in various fields because the big data has a great potential in detecting or predicting future events such as epidemic outbreaks and changes in stock prices. Reflecting the current popularity of big data analysis, many authors have proposed methods tracking influenza epidemics based on internet-based information. The recently proposed 'autoregressive model using Google (ARGO) model' (Yang et al., 2015) is one of those influenza tracking models that harness search queries from Google as well as the reports from the Centers for Disease Control (CDC), and appears to outperform the existing method such as 'Google Flu Trends (GFT)'. Although the ARGO predicts well the outbreaks of influenza, this study demonstrates that a classical seasonal autoregressive integrated moving average (SARIMA) model can outperform the ARGO. The SARIMA model incorporates more accurate seasonality of the past influenza activities and takes less input variables into account. Our findings show that the SARIMA model is a functional tool for monitoring influenza epidemics.

Validation of Mid Air Collision Detection Model using Aviation Safety Data (항공안전 데이터를 이용한 항공기 공중충돌위험식별 모형 검증 및 고도화)

  • Paek, Hyunjin;Park, Bae-seon;Kim, Hyewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.37-44
    • /
    • 2021
  • In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.

Developing a Multi-purpose Ecotoxicity Database Model and Web-based Searching System for Ecological Risk Assessment of EDCs in Korea (웹 기반 EDCs 생태 독성 자료베이스 모델 및 시스템 개발)

  • Kwon, Bareum;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.5
    • /
    • pp.412-421
    • /
    • 2017
  • Objectives: To establish a system for integrated risk assessment of EDCs in Korea, infrastructure for providing toxicity data of ecological media should be established. Some systems provide soil ecotoxicity databases along with aquatic ecotoxicity information, but a well-structured ecotoxicity database system is still lacking. Methods: Aquatic and soil ecotoxicological information were collected by a toxicologist based on a human readable data (HRD) format for collecting ecotoxicity data that we provided. Among these data, anomalies were removed according to database normalization theory. Also, the data were cleaned and encoded to establish a machine-readable data (MRD) ecotoxicity database system. Results: We have developed a multi-purpose ecotoxicity database model focusing on EDCs, ecological species, and toxic effects. Also, we have constructed a web-based data searching system to retrieve, extract, and download data with greater availability. Conclusions: The results of our study will contribute to decision-making as a tool for efficient ecological risk assessment of EDCs in Korea.

Experimental Analysis of Equilibrization in Binary Classification for Non-Image Imbalanced Data Using Wasserstein GAN

  • Wang, Zhi-Yong;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.37-42
    • /
    • 2019
  • In this paper, we explore the details of three classic data augmentation methods and two generative model based oversampling methods. The three classic data augmentation methods are random sampling (RANDOM), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive Synthetic Sampling (ADASYN). The two generative model based oversampling methods are Conditional Generative Adversarial Network (CGAN) and Wasserstein Generative Adversarial Network (WGAN). In imbalanced data, the whole instances are divided into majority class and minority class, where majority class occupies most of the instances in the training set and minority class only includes a few instances. Generative models have their own advantages when they are used to generate more plausible samples referring to the distribution of the minority class. We also adopt CGAN to compare the data augmentation performance with other methods. The experimental results show that WGAN-based oversampling technique is more stable than other approaches (RANDOM, SMOTE, ADASYN and CGAN) even with the very limited training datasets. However, when the imbalanced ratio is too small, generative model based approaches cannot achieve satisfying performance than the conventional data augmentation techniques. These results suggest us one of future research directions.

Wi-Fi Fingerprint-based Indoor Movement Route Data Generation Method (Wi-Fi 핑거프린트 기반 실내 이동 경로 데이터 생성 방법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.458-459
    • /
    • 2021
  • Recently, researches using deep learning technology based on Wi-Fi fingerprints have been conducted for accurate services in indoor location-based services. Among the deep learning models, an RNN model that can store information from the past can store continuous movements in indoor positioning, thereby reducing positioning errors. At this time, continuous sequential data is required as training data. However, since Wi-Fi fingerprint data is generally managed only with signals for a specific location, it is inappropriate to use it as training data for an RNN model. This paper proposes a path generation method through prediction of a moving path based on Wi-Fi fingerprint data extended to region data through clustering to generate sequential input data of the RNN model.

  • PDF

A cross-domain access control mechanism based on model migration and semantic reasoning

  • Ming Tan;Aodi Liu;Xiaohan Wang;Siyuan Shang;Na Wang;Xuehui Du
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1599-1618
    • /
    • 2024
  • Access control has always been one of the effective methods to protect data security. However, in new computing environments such as big data, data resources have the characteristics of distributed cross-domain sharing, massive and dynamic. Traditional access control mechanisms are difficult to meet the security needs. This paper proposes CACM-MMSR to solve distributed cross-domain access control problem for massive resources. The method uses blockchain and smart contracts as a link between different security domains. A permission decision model migration method based on access control logs is designed. It can realize the migration of historical policy to solve the problems of access control heterogeneity among different security domains and the updating of the old and new policies in the same security domain. Meanwhile, a semantic reasoning-based permission decision method for unstructured text data is designed. It can achieve a flexible permission decision by similarity thresholding. Experimental results show that the proposed method can reduce the decision time cost of distributed access control to less than 28.7% of a single node. The permission decision model migration method has a high decision accuracy of 97.4%. The semantic reasoning-based permission decision method is optimal to other reference methods in vectorization and index time cost.

On the Local Identifiability of Load Model Parameters in Measurement-based Approach

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.149-158
    • /
    • 2009
  • It is important to derive reliable parameter values in the measurement-based load model development of electric power systems. However parameter estimation tasks, in practice, often face the parameter identifiability issue; whether or not the model parameters can be estimated with a given input-output data set in reliable manner. This paper introduces concepts and practical definitions of the local identifiability of model parameters. A posteriori local identifiability is defined in the sense of nonlinear least squares. As numerical examples, local identifiability of third-order induction motor (IM) model and a Z-induction motor (Z-IM) model is studied. It is shown that parameter ill-conditioning can significantly affect on reliable parameter estimation task. Numerical studies show that local identifiability can be quite sensitive to input data and a given local solution. Finally, several countermeasures are proposed to overcome ill-conditioning problem in measurement-based load modeling.