• Title/Summary/Keyword: data-based model

Search Result 21,066, Processing Time 0.057 seconds

Determination of Optimal Hourly Water Intake Amount for H Arisu Purification Center using Linear Programming (선형계획법을 이용한 H 아리수 정수 센터 최적 취수량 결정)

  • Lee, Chulsoo;Lee, Kangwon
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1051-1064
    • /
    • 2015
  • Currently, the H purification plant determines the hourly water intake amount based on operator experience and skill. Therefore, inevitably, there are deviations among operators. While meeting time-varying demand and maintaining the proper water level in the clean water reservoir, the methodology for minimizing electricity cost, when dealing with different electricity rate time zones, is a very complicated problem, which is beyond an operator's capability. To solve this problem, a linear programming (LP) model is proposed, which can determine the optimal hourly water intake amount for minimizing the daily electricity cost. It is shown that an inaccurate estimate for the hourly water usage in the demand areas causes the water level constraint to be violated, which is the weak point of the proposed LP method. However, several examples with real-field data show that we can practically and safely solve this problem with safety margins. It is also shown that the safety margin method still works effectively whether the estimate is accurate or not. The operators need not attend the site at all times under the proposed LP method, and we can additionally expect reductions in labor costs.

A Study on the Relation between the Single-track Subway and Housing Price - Focused on Row and Multi-family House around Eungam Loop Line of Seoul Subway Line 6 - (단선 일방통행 방식의 지하철과 주택가격의 관계 분석 - 서울 지하철 6호선 응암순환선 구간 주변 연립다세대를 중심으로 -)

  • So, Soung-Kue;Oh, Sae-Joon;Lee, Kyu-Tai
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.39-56
    • /
    • 2019
  • In this study, we analyzed the effect of the Eungam Loop Line of Seoul Subway Line 6 on the sale price of adjacent row and multi-family houses on the accessibility and structural characteristics of subway stations. This study empirically analyzed a total of 17,938 cases from 2006 to 2017 based on data on the sale price of row and multi-family houses. In summary, the results of this study using the Hedonic Price Model are as follows. First, this study confirms that the Eungam Loop Line characteristics have a positive effect on the sale price as it is adjacent to the subway station. It is noteworthy that the sale price of 100-200m segment has a positive effect, and the sale price of Bulgwang station, which has excellent mobility and connectivity with CBD, YBD and GBD, has a positive effect. Second, this study shows the locational characteristics such as distance to bus stop, distance to mart, and distance to school have influence on the sale price. Third, this study finds the land characteristics such as land area, land shape, land facing, and road width, have significant effects on the sale price. Fourth, this study discovers the sale price is also is also affected by building and floor characteristics such as the type of housing, building area, the number of households, building age, elevator, and floor level.

A Study on the Modification Value for Estimation of Traveling Speed During Rainfall in Interrupted Traffic Flow (단속교통류에서 강우시 평균통행속도 산정을 위한 보정계수에 관한 연구)

  • Mo, Moo Ki;Lee, Seung Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • Generally, V/C ratio in uninterrupted traffic flow and average travel speed in interrupted traffic flow are utilized as measure of effect for assessing operational situation of roads. The set of road conditions and traffic conditions are considered to be major variables for assessing operational situation in the traffic flow. However, weather conditions such as rainfall also affect the operational situation of roads. The studies reflected by the rainy situation are conducted in the uninterrupted flow, but the related studies are insufficient in the interrupted flow. In this study, the modification factors during rainfall in the interrupted flow were suggested, and the factors could be used when calculating the average travel speed during rainfall in the interrupted flow. By utilizing the data that were investigated in the same road and traffic conditions and the different weather conditions (rainy day or clear day), the modification factors were founded on regression analysis of the travel speed during rainfall as a dependent variable. Modification factors was suggested in dividing peak time, non-peak time, and whole period. Based on this study, the modification factors can be used to complementing the average travel speed model for assessing the operational situation of urban streets during rainfall.

Spatial Patterns of Urban Flood Vulnerability in Seoul (도시 홍수 취약성의 공간적 분포 - 서울 지역을 중심으로 -)

  • Kim, Jisoo;Sung, Hyo Hyun;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.615-626
    • /
    • 2013
  • In this study, spatial patterns of the urban flood vulnerability index in Seoul are examined by considering climate exposure, sensitivity, and adaptability associated with floodings for recent 5 year (2006~2010) period by the smallest administrative unit called Dong. According to the results of correlation analyses based on the IPCC(Intergovernmental Panel on Climate Change)'s vulnerability model, among many variables associated with urban flooding, rainwater tank capacity, 1-day maximum precipitation and flood pumping station capacity have statistically-significant, and relatively-high correlations with the number of flood damage in Seoul. The flood vulnerability map demonstrates that the extensive areas along Anyang and Joongnang streams show relatively high flood vulnerability in Seoul due to high sensitivity. Especially in case of Joongnang stream areas, climatic factors also contribute to the increase of flood vulnerability. At local scales, several Dong areas in Gangdong-gu and Songpa-gu also show high flood vulnerability due to low adaptability, while those in Gangnam-gu do due to high sensibility and climate factor such as extreme rainfall events. These results derived from the flood vulnerability map by Dong unit can be utilized as primary data in establishing the adaptation, management and proactive policies for flooding prevention within the urban areas in more detail.

  • PDF

SPATIAL YIELD VARIABILITY AND SITE-SPECIFIC NITROGEN PRESCRIPTION FOR THE IMPROVED YIELD AND GRAIN QUALITY OF RICE

  • Lee Byun-Woo;Nguyen Tuan Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.57-74
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, the two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if prescribed N for site-specific fertilizer management at panicle initiation stage (VRT) could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, ,33 kg N/ha at PIS) method. The trial field was subdivided into two parts and each part was subjected to UN and VRT treatment. Each part was schematically divided in $10\times10m$ grids for growth and yield measurement or VRT treatment. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for this calculation were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with average of 57kg/ha that was higher than 33kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%\;and\;7.1\%$ in VRT from $14.6\%\;and\;13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. Although N use efficiency of VRT compared to UN was not quantified due to lack of no N control treatment, the procedure used in this paper for VRT estimation was believed to be reliable and promising method for managing within-field spatial variability of yield and protein content. The method should be received further study before it could be practically used for site-specific crop management in large-scale rice field.

  • PDF

Improving Course Evaluation System of Engineering Education (이공계 강의평가 결과의 실증적 분석을 통한 강의평가제도 개선방안)

  • Kim, Hak-Il;Kim, Sung-Sook;Kwon, Oh-Yang;Lee, Cheon;Row, Kyung-Ho
    • Journal of Engineering Education Research
    • /
    • v.10 no.4
    • /
    • pp.58-77
    • /
    • 2007
  • An evaluation system of teaching is one of authentic assessment tools for improving the quality of higher education. The purpose of this study is to cultivate the class evaluation system in the college of engineering based on the empirical analysis of the results of the class evaluation. Especially, this study investigates the validity evidence using the confirmatory factor analysis of the class evaluation. The data used in this study were acquired from 49,127 student's evaluation responses of 471 courses offered in colleges of natural science and engineering at a university in Korea. The reliabilities are quite good for every construct by producing an index value from 0.92 to 0.98. The results provides a guideline for an appropriate measurement model to report the information, to clarify quality and appropriateness of instrument items, to make recommendations for which items should be left or merged in the revised instrument. A special suggestion for improving student's evaluation of each course is to prepare a well-designed instruction for students explaining why and how to evaluate the course in order to produce reliable and valid results.

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Application of Particle Swarm Optimization(PSO) for Prediction of Water Quality in Agricultural Reservoirs of Korea (농업용 저수지의 수질 예측 모델을 위한 PSO(Particle Swarm Optimization) 알고리즘의 적용)

  • Kwon, Yong-Su;Bae, Mi-Jung;Hwang, Soon-Jin;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.11-20
    • /
    • 2008
  • In this study, we applied a Particle Swarm Optimization (PSO) algorithm to predict the changes of chlorophyll-${\alpha}$ related to environmental factors in agricultural reservoirs in Korean national scale. Data were obtained from water quality monitoring networks of reservoirs operated by the Ministry of Agriculture and Forestry and the Ministry of Environment of Korea. From the database of the monitoring networks, 290 reservoirs were chosen with variables such as chlorophyll-${\alpha}$ and 13 environmental factors (COD, TN, TP, Altitude, Bank height, etc.) measured in 2002. Based on Carlson's trophic status index, reservoirs were divided into five groups, and most agricultural reservoirs $(TSI_{CHL}\;64.1%,\;TSI_{TP}\;75.5%)$ were in the eutrophic states. The groups were discriminated with environmental variables, showing that COD, DO, and TP were important factors to determine the trophic states. MLP-PSO (Multilayer perceptron (MLP) with PSO for the optimization) was applied for the prediction of chlorophyll-${\alpha}$ with environment factors, and showed high predictability (r=0.83, p<0.001). Additionally, the sensitivity analysis of the MLP-PSO model showed that COD had the strongest positive effects on the concentration of chlorophyll-${\alpha}$, and followed by TP, TN, DO, whereas altitude and bank height had negative effects on the concentration of chlorophyll-${\alpha}$.

Performance of Oscillating Water Column type Wave Energy Converter in Oblique Waves (사파중 진동수주형 파력발전장치의 성능평가)

  • Jin, Jiyuan;Hyun, Beom-Soo;Hong, Keyyong;Liu, Zhen
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • In an oscillating water column (OWC)-type wave energy conversion system, the performance of the OWC chamber depends on the chamber shape, as well as the incident wave direction and pressure drop produced by the turbine. Although the previous studies on OWC chambers have focused on wave absorbing performance in ideal operating conditions, incident waves do not always arrive normally to the OWC chamber in real sea conditions, especially in fixed devices. The present study deals with experiments and numerical calculations to investigate the effects of wave direction on the performance of the OWC chamber. The experiments were carried out in a three-dimensional wave basin for five different wave directions, including the effect of turbine using the corresponding orifice. The wave elevation inside the chamber was measured at the center point under various incident wave conditions. The numerical study was conducted by using a numerical wave tank-based volume-of-fluid model to compare the results with experimental data and to reveal the detailed flows around the chamber.

Impact of IPCC RCP Scenarios on Streamflow and Sediment in the Hoeya River Basin (대표농도경로 (RCP) 시나리오에 따른 회야강 유역의 미래 유출 및 유사 변화 분석)

  • Hwang, Chang Su;Choi, Chul Uong;Choi, Ji Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.11-19
    • /
    • 2014
  • This study is analyze future climate and land cover change affects behaviors for amount of streamflow and sediment discharge within basin. We used the climate forecast data in RCP 4.5 and 8.5 (2011-2100) which is opposite view for each other among RCP scenarios that are discussed for 5th report for IPCC. Land cover map built based on a social economic storyline in RCP 4.5/8.5 using Logistic Regression model. In this study we set three scenarios: one scenario for climate change only, one for land cover change only, one for Last both climate change and land cover change. It simulated amount of streamflow and sediment discharge and the result showed a very definite change in the seasonal variation both of them. For climate change, spring and winter increased the amount of streamflow while summer and fall decreased them. Sediment showed the same pattern of change steamflow. Land cover change increases the amount of streamflow while it decreases the amount of sediment discharge, which is believed to be caused by increase of impervious Surface due to urbanization. Although land cover change less affects the amount of streamflow than climate change, it may maximize problems related to the amount of streamflow caused by climate change. Therefore, it's required to address potential influence from climate change for effective water resource management and prepare suitable measurement for water resource.