Rochani, Haresh;Linder, Daniel F.;Samawi, Hani;Panchal, Viral
Communications for Statistical Applications and Methods
/
제25권1호
/
pp.1-13
/
2018
In many studies, a researcher attempts to describe a population where units are measured for multiple outcomes, or responses. In this paper, we present an efficient procedure based on ranked set sampling to estimate and perform hypothesis testing on a multivariate mean. The method is based on ranking on an auxiliary covariate, which is assumed to be correlated with the multivariate response, in order to improve the efficiency of the estimation. We showed that the proposed estimators developed under this sampling scheme are unbiased, have smaller variance in the multivariate sense, and are asymptotically Gaussian. We also demonstrated that the efficiency of multivariate regression estimator can be improved by using Ranked set sampling. A bootstrap routine is developed in the statistical software R to perform inference when the sample size is small. We use a simulation study to investigate the performance of the method under known conditions and apply the method to the biomarker data collected in China Health and Nutrition Survey (CHNS 2009) data.
A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.
Journal of the Korean Data and Information Science Society
/
제22권1호
/
pp.37-47
/
2011
주가지수 옵션시장에는 많은 투자전략이 개발되어 있다. 그중 차익거래 전략은 시장이 효율성 유지측면에서 매우 중요한 역할을 하고 있다. 본 연구는 이러한 차익거래 전략 중 박스스프레드 전략을 적용하여 과거 옵션 데이터를 통해 사후 검증하고 러프 집합을 이용해 수익성을 향상시키고자 한다. 옵션 데이터는 2002년 1월부터 2006년 12월까지 실제 증권거래소에서 거래되었던 틱 데이터를 기반으로 하고 있으며 비주얼 베이직을 이용해 9시부터 오후 3시까지의 1분 마다의 종가인 1분봉으로 변형하여 분석을 하였다. 박스스프레드 전략은 낮은 위험, 낮은 이익 구조를 가지고 있다. 기존의 전략을 과거 데이터를 기반으로 백 테스팅 해보고 러프 집합을 이용하여 거래 진입 시점을 제한함으로써, 동일 위험 대비 좀 더 높은 수익구조를 만들어 낼 수 있는 전략을 구사한다면 낮은 위험으로 안정적 수익을 취할 수 있다.
Surface water mapping has been widely used in various remote sensing applications. Water indices have been commonly used to distinguish water bodies from land; however, determining the optimal threshold and discriminating water bodies from similar objects such as shadows and snow is difficult. Deep learning algorithms have greatly advanced image segmentation and classification. In particular, FCN (Fully Convolutional Network) is state-of-the-art in per-pixel image segmentation and are used in most benchmarks such as PASCAL VOC2012 and Microsoft COCO (Common Objects in Context). However, these data sets are designed for daily scenarios and a few studies have conducted on applications of FCN using large scale remotely sensed data set. This paper aims to fine-tune the pre-trained FCN network using the CRMS (Coastwide Reference Monitoring System) data set for surface water mapping. The CRMS provides color infrared aerial photos and ground truth maps for the monitoring and restoration of wetlands in Louisiana, USA. To effectively learn the characteristics of surface water, we used pre-trained the DeepWaterMap network, which classifies water, land, snow, ice, clouds, and shadows using Landsat satellite images. Furthermore, the DeepWaterMap network was fine-tuned for the CRMS data set using two classes: water and land. The fine-tuned network finally classifies surface water without any additional learning process. The experimental results show that the proposed method enables high-quality surface mapping from CRMS data set and show the suitability of pre-trained FCN networks using remote sensing data for surface water mapping.
A good understanding of normal modal variability of civil structures due to varying environmental conditions such as temperature and wind is important for reliable performance of vibration-based damage detection methods. This paper addresses the quantification of wind-induced modal variability of a cable-stayed bridge making use of one-year monitoring data. In order to discriminate the wind-induced modal variability from the temperature-induced modal variability, the one-year monitoring data are divided into two sets: the first set includes the data obtained under weak wind conditions (hourly-average wind speed less than 2 m/s) during all four seasons, and the second set includes the data obtained under both weak and strong (typhoon) wind conditions during the summer only. The measured modal frequencies and temperatures of the bridge obtained from the first set of data are used to formulate temperature-frequency correlation models by means of artificial neural network technique. Before the second set of data is utilized to quantify the wind-induced modal variability, the effect of temperature on the measured modal frequencies is first eliminated by normalizing these modal frequencies to a reference temperature with the use of the temperature-frequency correlation models. Then the wind-induced modal variability is quantitatively evaluated by correlating the normalized modal frequencies for each mode with the wind speed measurement data. It is revealed that in contrast to the dependence of modal frequencies on temperature, there is no explicit correlation between the modal frequencies and wind intensity. For most of the measured modes, the modal frequencies exhibit a slightly increasing trend with the increase of wind speed in statistical sense. The relative variation of the modal frequencies arising from wind effect (with the maximum hourly-average wind speed up to 17.6 m/s) is estimated to range from 1.61% to 7.87% for the measured 8 modes of the bridge, being notably less than the modal variability caused by temperature effect.
이 연구는 중 고등학생들의 측정 인식에 나타난 추론 유형을 분석하여 과학 교육의 시사점을 얻는 데 있다. 연구 대상은 중학생 197명과 고등학생 200명으로 하였다. 측정에 대한 인식 조사를 위하여 검사지 PMQ1을 사용하였고, 검사지의 문항별 응답 내용은 부호화된 분석틀을 기준으로 점 추론과 집합 추론 유형으로 분석하였다. 분석한 추론 유형을 자료 수집, 자료 처리, 자료 비교로 나누어 측정 단계별 추론 유형 분포 및 학년별 집합 추론 유형 분포 차이를 분석하였다. 또한 측정의 불확실성에 대한 추론 유형 분석을 통해 각 측정 단계별 나타난 추론 유형과 비교 분석하였다. 측정 단계별 추론 유형 분포에서 집합 추론 유형은, 자료 처리에서 높게 나타났고, 자료 수집과 자료 비교에서 낮게 나타났다. 측정 단계별 학년에 따른 집합 추론 유형 분포는 자료 비교 단계에서 중학생들과 고등학생들 사이에 유의미한 차이가 있었다. 측정의 불확실성에 대한 인식은 집합 추론 유형이 높게 나타났으나 학년에 따라 유의미한 차이는 없었다. 측정을 통해 신뢰할 수 있는 결과를 얻기 위해서는 각 측정 단계에서 측정의 불확실성에 대한 인식이 일관성 있게 작용해야 하며 이는 학생들에게 측정에 대한 직접적인 교수 학습이 필요함을 시사한다.
화자인식 시스템에서 화자 모델은 여러 세션동안 수집된 많은 양의 데이터 집합으로 등록한다. 많은 양의 데이터 집합은 많은 양의 메모리와 계산을 필요로 할 뿐 아니라, 게다가 사용자가 음성 등록을 위하여 여러 번에 걸쳐서 발성해야 하는 문제점이 있다. 최근, 이러한 문제를 보완하기 위해서 많은 적응 방법들이 제안되었다. 그러나, 여러 세션동안 모아진 데이터 집합은 불규칙한 발성 변화와 잡음 같은 이상치에 취약하고, 그것은 부정확한 화자 모델을 만든다. 본 논문에서는, GMM에 기초를 둔 화자 모델에 이상치들의 영향을 최소화하기 위한 적응 방법을 제안하였다. 강인한 적응은 M-추정의 점진적인 방법으로부터 얻어진다. 화자 모델은 초기에 적은 양의 데이터로 등록되어지고, 각각의 세션에서 얻어진 데이터로 반복적으로 적응시킨다. 실험 결과는 7개월에 걸쳐서 수집된 데이터 집합으로부터 제안된 방법이 이상치에 강인하다는 것을 보여준다.
본 연구에서는 공간 영상 자료의 감독 분류에 있어, 분석자에 의하여 선정된 분류 항목별 교사 자료를 분광 특징별로 다수의 군집으로 분리하고, 각각의 군집을 새로운 분류 항목의 교사 자료로서 설정함으로써 분류 성능을 향상시킬 수 있는 기법을 제안하고자 한다 특징 분리를 통하여 생성된 교사 자료는 비교적 작은 값의 밴드별 분산값을 가질 뿐 아니라 정규분포 형태의 자료 분포를 보이게 되어 통계적 감독 분류 기법의 적용에 적합한 교사 자료로서의 성격을 가지게 된다. 제안된 기법은 부산 지역에 대한 Landsat TM 영상 자료를 이용하여 그 적용성이 시험되었으며, 기존의 통계적 분류 기법들에 의한 결과와 그 성능이 정성적으로 비교되었다. 시험 적용 결과, 본 기법은 분석자가 선정한 교사 자료의 분광적인 분포 형태에 관계없이 우수한 분류 성능을 나타내는 것으로 판단되며, 따라서 분류 항목의 설정 및 항목별 교사 자료의 선정에 있어 교사 자료의 분광적 특징에 대한 동일성을 유지하기 위한 노력을 줄여줄 것으로 기대된다.
최근 알려지지 않은 공격에 대처하기 위한 네트워크 비정상(anomaly) 탐지 기술에 대한 관심이 한층 높아지고 있다. 이러한 기술 개발을 위해 데이터 마이닝(data mining), 기계학습(machine learning), 그리고 딥러닝(deep learning)등을 활용한 다양한 연구가 진행되고 있다. 본 논문에서는 분류(classification) 문제를 다루는 데이터 마이닝 기술 중 가장 전통적인 방법 중 하나인 의사결정나무(decision tree)를 이용하여 NSL-KDD 데이터 셋을 대상으로 네트워크 비정상 탐지 가능성을 보여준다. 의사결정나무의 과대적합(over-fitting) 단점을 해소하기 위해 카이-제곱(chi-square) 테스트를 통해 최적의 속성 선택(feature selection)을 수행하고, 선택된 13개의 속성을 사용한 의사결정나무 모델 환경에서 NSL-KDD 시험 데이터 셋 KDDTest+에 대해 84% 그리고 KDDTest-21에 대해 70%의 네트워크 비정상 검출 정확도를 보였다. 제시된 정확도는 기존 의사결정나무 모델 적용 시 이들 시험 데이터 셋을 대상으로 알려진 정확도 81% 그리고 64% 수준과 비교해 약 3% 그리고 6% 각각 향상된 결과다.
The purpose of this study is to predict Trophic Diatom Index (TDI) in tributaries of the Han River watershed using the random forest algorithm. The one year (2017) and supplied aquatic ecology health data were used. The data includes water quality(BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, water temperature, DO, pH, conductivity, turbidity), hydraulic factors(water width, average water depth, average velocity of water), and TDI score. Seven factors including water temperature, BOD, T-N, $NH_3-N$, T-P, $PO_4-P$, and average water depth are selected by the Correlation Feature Selection. A TDI prediction model was generated by random forest using the seven factors. To evaluate this model, 2017 data set was used first. As a result of the evaluation, $R^2$, % Difference, NSE(Nash-Sutcliffe Efficiency), RMSE(Root Mean Square Error) and accuracy rate show that this model is compatible with predicting TDI. To be more concrete, $R^2$ is 0.93, % Difference is -0.37, NSE is 0.89, RMSE is 8.22 and accuracy rate is 70.4%. Also, additional evaluation using data set more than 17 times the measured point was performed. The results were similar when the 2017 data set were used. The Wilcoxon Signed Ranks Test shows there was no statistically significant difference between actual and predicted data for the 2017 data set. These results can specify the elements which probably affect aquatic ecology health. Also, these will provide direction relative to water quality management for a watershed that must be continuously preserved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.