• Title/Summary/Keyword: data partition

Search Result 416, Processing Time 0.02 seconds

A Range Query Method using Index in Large-scale Database Systems (대규모 데이터베이스 시스템에서 인덱스를 이용한 범위 질의 방법)

  • Kim, Chi-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1095-1101
    • /
    • 2012
  • As the amount of data increases explosively, a large scale database system is emerged to store, retrieve and manipulate it. There are several issues in this environments such as, consistency, availability and fault tolerance. In this paper, we address a efficient range-query method where data management services are separated from transaction management services in large-scale database systems. A study had been proposed using partitions to protect independence of two modules and to resolve the phantom problem, but this method was efficient only when range-query is specified by a key. So, we present a new method that can improve the efficiency when range-query is specified by a key attribute as well as other attributes. The presented method can guarantee the independence of separated modules and alleviate overheads for range-query using partial index.

Design and Implementation of Virtual and Invisible Private Disk (VIPDISK) having Secure Storage Device (보안 저장장치를 구비한 가상의 인비저블한 보안 디스크 (VIPDISK) 설계 및 구현)

  • Quan, Shan Guo;Kwon, Yong-Gu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.4
    • /
    • pp.781-792
    • /
    • 2015
  • This paper proposes a virtual and invisible private disk (VIPDISK) technology equipped with the secure storage devices. As a software based security technology, it can create hidden partitions on any data storage device which can not be identified by the windows OS, so the program running on it, does not have any evidence of the existence of the hidden storage space. Under inactive state, it maintains an unexposed secure partition which can only be activated with a matching combination of a unique digital key and a user password to open the decryption tool. In addition, VIPDISK can store data to secure storage device with real-time encryption, it is worry-free even in the case of lost or theft. Simulation results show that VIPDISK provides a much higher level of security compared to other existing schemes.

Characteristics of Input-Output Spaces of Fuzzy Inference Systems by Means of Membership Functions and Performance Analyses (소속 함수에 의한 퍼지 추론 시스템의 입출력 공간 특성 및 성능 분석)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.74-82
    • /
    • 2011
  • To do fuzzy modelling of a nonlinear process needs to analyze the characteristics of input-output of fuzzy inference systems according to the division of entire input spaces and the fuzzy reasoning methods. For this, fuzzy model is expressed by identifying the structure and parameters of the system by means of input variables, fuzzy partition of input spaces, and consequence polynomial functions. In the premise part of the fuzzy rules Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the clusters are used for identification of fuzzy model and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. In the consequence part of the fuzzy rules fuzzy reasoning is conducted by two types of inferences such as simplified and linear inference. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. And lastly, using gas furnace process which is widely used in nonlinear process we evaluate the performance and the system characteristics.

Customer Relation Management Application using Associative Mining (연관 마이닝을 이용한 고객 관계 관리 적용)

  • Chung, Kyung-Yong;Kim, Jong-Hun;Ryu, Joong-Kyung;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.26-33
    • /
    • 2008
  • The customer relation marketing in which companies can utilize to control and to get the filtered information efficiently has appeared in ubiquitous commerce. It is applying data mining technique to build the management that can even predict and recommend products to customers. In this paper, we proposed the case of customer relation management application using the associative mining. The proposed method uses the associative mining composes frequent customers with occurrence of candidate customer-set creates the association rules. We analyzed the efficient the feature of purchase customers using the hypergraph partition according to the lift of creative association rules. Therefore, we discovered strategies of the cross-selling and the up-selling. To estimate the performance, the suggested method is compared with the existing methods in the questionnaire dataset. The results have shown that the proposed method significantly outperforms the accuracy than the previous methods.

A Study on Fuzzy Set-based Polynomial Neural Networks Based on Evolutionary Data Granulation (Evolutionary Data Granulation 기반으로한 퍼지 집합 다항식 뉴럴 네트워크에 관한 연구)

  • 노석범;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.433-436
    • /
    • 2004
  • In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.

  • PDF

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.

A Study on the MMORPG Server Architecture Applying with Arithmetic Server (연산서버를 적용한 MMORPG 게임서버에 관한 연구)

  • Bae, Sung-Gill;Kim, Hye-Young
    • Journal of Korea Game Society
    • /
    • v.13 no.2
    • /
    • pp.39-48
    • /
    • 2013
  • In MMORPGs(Massively Multi-player Online Role-Playing Games) a large number of players actively interact with one another in a virtual world. Therefore MMORGs must be able to quickly process real-time access requests and process requests from numerous gaming users. A key challenge is that the workload of the game server increases as the number of gaming users increases. To address this workload problem, many developers apply with distributed server architectures which use dynamic map partitioning and load balancing according to the server function. Therefore most MMORPG servers partition a virtual world into zones and each zone runs on multiple game servers. These methods cause of players frequently move between game servers, which imposes high overhead for data updates. In this paper, we propose a new architecture that apply with an arithmetic server dedicated to data operation. This architecture enables the existing game servers to process more access and job requests by reducing the load. Through mathematical modeling and experimental results, we show that our scheme yields higher efficiency than the existing ones.

Region-Growing Segmentation Algorithm for Rossless Image Compression to High-Resolution Medical Image (영역 성장 분할 기법을 이용한 무손실 영상 압축)

  • 박정선;김길중;전계록
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • In this paper, we proposed a lossless compression algorithm of medical images which is essential technique in picture archive and communication system. Mammographic image and magnetic resonance image in among medical images used in this study, proposed a region growing segmentation algorithm for compression of these images. A proposed algorithm was partition by three sub region which error image, discontinuity index map, high order bit data from original image. And generated discontinuity index image data and error image which apply to a region growing algorithm are compressed using JBIG(Joint Bi-level Image experts Group) algorithm that is international hi-level image compression standard and proper image compression technique of gray code digital Images. The proposed lossless compression method resulted in, on the average, lossless compression to about 73.14% with a database of high-resolution digital mammography images. In comparison with direct coding by JBIG, JPEG, and Lempel-Ziv coding methods, the proposed method performed better by 3.7%, 7.9% and 23.6% on the database used.

  • PDF

Adaptive Customer Relation Management Strategies using Association Rules (연관 규칙을 이용한 적응적 고객 관계 관리 전략)

  • Han, Ki-Tae;Chung, Kyung-Yong;Baek, Jun-Ho;Kim, Jong-Hun;Ryu, Joong-Kyung;Lee, Jung-Hyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.84-86
    • /
    • 2008
  • The customer relation marketing in which companies can utilize to control and to get the filtered information efficiently has appeared. It is applying data mining to build the management that can even predict and recommend products to customers. In this paper, we proposed the adaptive customer relation management strategies using the association rules of data mining. The proposed method uses the association rules composes frequent customers with occurrence of candidate customer set creates the rules of associative customers. We analyzed the efficient feature of purchase customers using the hyper graph partition according to the lift of creative association rules. Therefore, we discovered strategies of the cross-selling and the up-selling about customers.

  • PDF

Discretization of Numerical Attributes and Approximate Reasoning by using Rough Membership Function) (러프 소속 함수를 이용한 수치 속성의 이산화와 근사 추론)

  • Kwon, Eun-Ah;Kim, Hong-Gi
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.545-557
    • /
    • 2001
  • In this paper we propose a hierarchical classification algorithm based on rough membership function which can reason a new object approximately. We use the fuzzy reasoning method that substitutes fuzzy membership value for linguistic uncertainty and reason approximately based on the composition of membership values of conditional sttributes Here we use the rough membership function instead of the fuzzy membership function It can reduce the process that the fuzzy algorithm using fuzzy membership function produces fuzzy rules In addition, we transform the information system to the understandable minimal decision information system In order to do we, study the discretization of continuous valued attributes and propose the discretization algorithm based on the rough membership function and the entropy of the information theory The test shows a good partition that produce the smaller decision system We experimented the IRIS data etc. using our proposed algorithm The experimental results with IRIS data shows 96%~98% rate of classification.

  • PDF