Korean Journal of Computational Design and Engineering
/
v.4
no.3
/
pp.173-179
/
1999
In reverse engineering, when a shape containing multi-patched surfaces is digitized, the boundaries of these surfaces should be detected. The objective of this paper is to introduce a computationally efficient segmentation technique for extracting edges, ad partitioning the 3D measuring point data based on the location of the boundaries. The procedure begins with the identification of the edge points. An automatic edge-based approach is developed on the basis of local geometry. A parametric quadric surface approximation method is used to estimate the local surface curvature properties. the least-square approximation scheme minimizes the sum of the squares of the actual euclidean distance between the neighborhood data points and the parametric quadric surface. The surface curvatures and the principal directions are computed from the locally approximated surfaces. Edge points are identified as the curvature extremes, and zero-crossing, which are found from the estimated surface curvatures. After edge points are identified, edge-neighborhood chain-coding algorithm is used for forming boundary curves. The original point set is then broke down into subsets, which meet along the boundaries, by scan line algorithm. All point data are applied to each boundary loops to partition the points to different regions. Experimental results are presented to verify the developed method.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.3
no.2
/
pp.194-199
/
2003
Data are an expression of the language or numerical values that show some features. And the information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns or make a decision. Today, knowledge extraction and application of that are broadly accomplished for the easy comprehension and the performance improvement of systems in the several industrial fields. The knowledge extraction can be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge is drawn by rules with data mining techniques. Clustering (CL), input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for the knowledge expression based upon rules. In this paper, the various approaches of the knowledge extraction are surveyed and categorized by methodologies and applied industrial fields. Also, the trend and examples of each approaches are shown in the tables and graphes using the categories such as CL, ISP, NF, NN, EM, and so on.
Recently, It has been increased to use a multi-dimensional data in various applications with a rapid growth of the computing environment. In this paper, we propose the vector approximate tree for content-based retrieval of multi-dimensional data. The proposed index structure reduces the depth of tree by storing the many region information in a node because of representing region information using space partition based method and vector approximation method. Also it efficiently handles 'dimensionality curse' that causes a problem of multi-dimensional index structure by assigning the multi-dimensional data space to dynamic bit. And it provides the more correct regions by representing the child region information as the parent region information relatively. We show that our index structure outperforms the existing index structure by various experimental evaluations.
Nowadays most colleges are confronting with a serious problem because many students have left their majors at the colleges. In order to make a countermeasure for reducing major separation rate, many universities are trying to find a proper solution. As a similar endeavor, the objective of this paper Is to find a predicting model of students leaving their majors. The sample for this study was chosen from a university in Kangwon-Do during seven years(2000.3.1 $\sim$ 2006. 6.30). In this study, the ratio of training sample versus testing sample among partition data was controlled as 50% : 50% for a validation test of data division. Also, this study provides values about accuracy, sensitivity, specificity about three kinds of algorithms including CHAID, CART and C4.5. In addition, ROC chart and gains chart were used for classification of students leaving their majors. The analysis results were very informative since those enable us to know the most important factors such as semester taking a course, grade on cultural subjects, scholarship, grade on majors, and total completion of courses which can affect students leaving their majors.
Gradient centrifugal partition chromatography (GCPC) method was developed and applied to isolate 3,5-dimethoxyphenanthrene-2,7-diol (DMP) and batatasin-I (BA-I) from the dichloromethane soluble extract of Dioscorea opposita. In this method, the lower phase of n-hexane-methanol-water system (HMW, 10 : 9 : 1, v/v) was used as a mobile phase A (MpA) and water was used as a mobile phase B (MpB). This gradient CPC method is comparable to that of reversed-phase HPLC method in that the stationary upper-phase of HMW (10 : 9 : 1 v/v) works as if it were reversed-phase silica gel due to its hydrophobic property, while the lower phase (MpA) and water (MpB) functioned as hydrophilic mobile phases. The initial condition of the mobile phase was 20% MpA/80% MpB and maintained for 150 min to obtain DMP (1.2 mg), and then MpA was increased up to 50% to elute BA-I (1.7 mg). The purities of DMP and BA-I were 94.1% and 98.3% with the recovery yields of 83% and 86%, respectively. Similar results were obtained by linear-gradient CPC. The CPC peak fractions were identified by comparing their retention time to those of authentic samples of DMP and BA-I and their spectroscopic data ($^1$H NMR and $^{13}$C NMR) to those of literature values.
Cortex Phellodendri (CP) is derived from the dried bark of Phellodendron amurense. It has been widely used as a drug in traditional Korea medicine for treating diarrhea, jaundice, swelling pains in the knees and feet, urinary tract infections, and infections of the body surface. Many analytical methods have been used to study oriental herbal medicines, such as thin-layer chromatography, column liquid chromatography, and high performance liquid chromatography (HPLC). In this study, preparative centrifugal partition chromatography (CPC) was successfully carried out in order to separate pure compounds from a CP methanol extract. The optimum two-phase CPC solvent system was composed of n-butanol: acetic acid: water (4:1:5 v/v/v). The flow rate of the mobile phase was 3 mL/min in ascending mode with rotation at 1,000 rpm. The CPC-separated fraction and purification procedures were carried out by preparatory HPLC. The $^1H$ NMR spectrum revealed that the resonances at ${\delta}$ 4.10 and 4.20 ppm corresponded to three protons ($-OCH_3$), whereas those at ${\delta}$ 6.10 ppm corresponded to two protons ($-OCH_2O-$). Further, two aromatic protons (H-11 and H-12) conveys a doublet-doublet pattern. The H-11 doublet and H-12 doublet appear at ${\delta}$ 7.98 and 8.11, respectively. The $^{13}C$ NMR. spectrum showed a tetrasubstituted with a methylenedioxy group at C2 and C3, and two methoxy groups at C9 and C10. The chemical structure of the berberine was identified by $^1H$, $^{13}C$-nuclear magnetic resonance and electrospray ionization-mass spectroscopy spectral data analysis.
Background: Various types of semi-volatile organic compounds (SVOCs) exist in the public's living environment. They occur in different forms in terms of their physical and chemical properties and partition coefficients. As a consequence, indoor exposure to SVOCs occurs via various routes, including inhalation of air and airborne particles, skin contact, and dust intake. Objectives: To propose a method for assessing human exposure to the SVOCs occurring in the air of an indoor environment, the concentrations of SVOCs in house dust and organic films measured in a real residential environment were estimated in terms of gas-phase concentration using the partition coefficient. Assessment of inhalation exposure to SVOCs was performed using this method. Methods: Phthalates were collected from samples of house dust and organic films from 110 households in a real residential environment. To perform an exposures assessment of the phthalates present in organic films, gas-phase concentration was calculated using the partition coefficient. The airborne gas-phase concentrations of phthalates from the house dust and organic films were estimated and exposure assessment was performed based on the assumption of inhalation exposure from air. Results: As a result of the exposure assessment for gas-phase phthalates from house dust and organic films, preschool children showed the highest level of inhalation of phthalates, followed by school children, adults, and adolescents. Conclusions: This study includes the limitation of not considering different SVOCs exposure pathways in the health impact assessment, including those of phthalates in the indoor living environment. However, this study has the significance of performing exposure assessment based on exposure to SVOCs present in indoor air that originated from organic films in the indoor residential environment. Therefore, the results of this study should be useful as basic data for exposure and health risk assessments of SVOCs associated with organic films in the indoor environment.
Objectives: This study intends to evaluate the ecological risk of lead (Pb), arsenic (As), and their compounds according to the 2010 action plan on inventory and management for national priority chemicals and provide calculations of risks to the environment. By doing so, we aim to inform risk management measures for the target chemicals. Methods: We conducted species sensitivity distribution (SSD) analysis using the collected ecotoxicity data and obtained predicted no effect concentrations (PNECs) for the in-water environment using a hazardous concentration of 5% (HC5) protective of most species (95%) in the environment. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. We also calculated predicted exposure concentration (PEC) from nation-wide environmental monitoring data and then the hazard quotient (HQ) was calculated using PNEC for environmental media. Results: Ecological toxicity data was categorized into five groups and five species for Pb and four groups and four species for As. Based on the HC5 values from SSD analysis, the PNEC value for aquatic organisms was calculated as 0.40 ㎍/L for Pb and 0.13 ㎍/L for As. PNEC values for soil and sediment calculated using a partition coefficient were 77.36 and 350.50 mg/kg for Pb and 24.20 and 112.75 mg/kg for As. The analysis of national environmental monitoring data showed that PEC values in water were 0.284 ㎍/L for Pb and 0.024 ㎍/L for As, while those in soil and sediment were respectively 45.9 and 44 mg/kg for Pb, and 11.40 and 19.80 mg/kg for As. Conclusions: HQs of Pb and As were 0.70 and 0.18 in water, while those in soil and sediment were 0.59 and 0.13 for Pb and 0.47 and 0.18 for As. With HQs <1 of lead and arsenic in the environment, their ecological risk levels are found to be low.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.2
/
pp.165-172
/
2010
In clinical data minig, choosing the optimal subset of features is such important, not only to reduce the computational complexity but also to improve the usefulness of the model constructed from the given data. Moreover the threshold values (i.e., cut-off points) of selected features are used in a clinical decision criteria of experts for differential diagnosis of diseases. In this paper, we propose a fuzzy discretization approach, which is evaluated by measuring the degree of separation of redundant attribute values in overlapping region, based on spatial distribution of data with continuous attributes. The weighted average of the redundant attribute values is then used to determine the threshold value for each feature and rough set theory is utilized to select a subset of relevant features from the overall features. To verify the validity of the proposed method, we compared experimental results, which applied to classification problem using 668 patients with a chief complaint of dyspnea, based on three discretization methods (i.e., equal-width, equal-frequency, and entropy-based) and proposed discretization method. From the experimental results, we confirm that the discretization methods with fuzzy partition give better results in two evaluation measures, average classification accuracy and G-mean, than those with hard partition.
Due to recent increase in applications requiring huge amount of data such as spatial data analysis and image analysis, clustering on large databases has been actively studied. In a hierarchical clustering method, a tree representing hierarchical decomposition of the database is first created, and then, used for efficient clustering. Existing hierarchical clustering methods mainly adopted the bottom-up approach, which creates a tree from the bottom to the topmost level of the hierarchy. These bottom-up methods require at least one scan over the entire database in order to build the tree and need to search most nodes of the tree since the clustering algorithm starts from the leaf level. In this paper, we propose a novel top-down hierarchical clustering method that uses multidimensional indexes that are already maintained in most database applications. Generally, multidimensional indexes have the clustering property storing similar objects in the same (or adjacent) data pares. Using this property we can find adjacent objects without calculating distances among them. We first formally define the cluster based on the density of objects. For the definition, we propose the concept of the region contrast partition based on the density of the region. To speed up the clustering algorithm, we use the branch-and-bound algorithm. We propose the bounds and formally prove their correctness. Experimental results show that the proposed method is at least as effective in quality of clustering as BIRCH, a bottom-up hierarchical clustering method, while reducing the number of page accesses by up to 26~187 times depending on the size of the database. As a result, we believe that the proposed method significantly improves the clustering performance in large databases and is practically usable in various database applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.