• Title/Summary/Keyword: data partition

Search Result 416, Processing Time 0.023 seconds

The Study of Distributed Processing for Graphics Rendering Engine Based on ARINC 653 Multi-Core System (ARINC 653 멀티코어 기반 그래픽스 렌더링 엔진 분산처리방안 연구)

  • Jung, Mukyoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, avionics has been migrating from a federated architecture to an integrated modular architecture based on a multi-core to reduce the number of systems, weight, power consumption, and platform redundancy. The volume of data which must bo provided to the pilot through the display device has increased, because an integrated single device performs multiple functions. For this reason, the volume of data processed by the graphic processor within a fixed operation period has increased. In this paper, we provide a multi-core-based rendering engine in to perform more graphics processing within a fixed operation period. We assume the proposed method uses a multi-core-based partitioning operating system using the AMP (Asymmetric Multi-Processing) architecture.

An Optimized Iterative Semantic Compression Algorithm And Parallel Processing for Large Scale Data

  • Jin, Ran;Chen, Gang;Tung, Anthony K.H.;Shou, Lidan;Ooi, Beng Chin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2761-2781
    • /
    • 2018
  • With the continuous growth of data size and the use of compression technology, data reduction has great research value and practical significance. Aiming at the shortcomings of the existing semantic compression algorithm, this paper is based on the analysis of ItCompress algorithm, and designs a method of bidirectional order selection based on interval partitioning, which named An Optimized Iterative Semantic Compression Algorithm (Optimized ItCompress Algorithm). In order to further improve the speed of the algorithm, we propose a parallel optimization iterative semantic compression algorithm using GPU (POICAG) and an optimized iterative semantic compression algorithm using Spark (DOICAS). A lot of valid experiments are carried out on four kinds of datasets, which fully verified the efficiency of the proposed algorithm.

An Effective Clustering Procedure for Quantitative Data and Its Application for the Grouping of the Reusable Nuclear Fuel (정량적 자료에 대한 효과적인 군집화 과정 및 사용 후 핵연료의 분류에의 적용)

  • Jing, Jin-Xi;Yoon, Bok-Sik;Lee, Yong-Joo
    • IE interfaces
    • /
    • v.15 no.2
    • /
    • pp.182-188
    • /
    • 2002
  • Clustering is widely used in various fields in order to investigate structural characteristics of the given data. One of the main tasks of clustering is to partition a set of objects into homogeneous groups for the purpose of data reduction. In this paper a simple but computationally efficient clustering procedure is devised and some statistical techniques to validate its clustered results are discussed. In the given procedure, the proper number of clusters and the clustered groups can be determined simultaneously. The whole procedure is applied to a practical clustering problem for the classification of reusable fuels in nuclear power plants.

Charted Depth Interpolation: Neuron Network Approaches

  • Shi, Chaojian
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.629-634
    • /
    • 2004
  • Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.

Charted Depth Interpolation: Neuron Network Approaches

  • Chaojian, Shi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.37-44
    • /
    • 2004
  • Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.

  • PDF

An effective error resilience coding of MPEG-4 video stream using DMB system (DMB를 통한 MPEG-4 비디오 스트림의 효율적인 오류 내성부호화 방안)

  • 백선혜;나남웅;홍성훈;이봉호;함영권
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2060-2063
    • /
    • 2003
  • Terrestrial DMB(Digital Multimedia Broad-casting) system that is now under standardization in Korea offers multimedia broadcasting services at mobile environment and is based on Eureka-147 DAB(Digital Audio Broadcasting) for transmission method. Also DMB provides the error protection method of convolution coding. In this paper, we study on the effective error resilience coding of MPEG-4 video stream over DMB system. In our algorithm, the first, we partition the MPEG-4 data using the MPEG-4 data partitioning method, and then controls the convolution coding rate according to the importance of the partitioned data. From our simulation result, we show that our algorithm is proper for terrestrial DMB services.

  • PDF

A New Fuzzy Modeling Algorithm Considering Correlation among Components of Input Data (입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링)

  • 김은태;박민기;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.111-114
    • /
    • 1997
  • Generally, fuzzy models have the capability of dividing input space into several subspaces. compared to liner ones. But hitherto suggested fuzzy modeling algorithms not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem. this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently than conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space. the method of principal component is used. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

On Color Cluster Analysis with Three-dimensional Fuzzy Color Ball

  • Kim, Dae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.262-267
    • /
    • 2008
  • The focus of this paper is on devising an efficient clustering task for arbitrary color data. In order to tackle this problem, the inherent uncertainty and vagueness of color are represented by a fuzzy color model. By taking a fuzzy approach to color representation, the proposed model makes a soft decision for the vague regions between neighboring colors. A definition on a three-dimensional fuzzy color ball is introduced, and the degree of membership of color is computed by employing a distance measure between a fuzzy color and color data. With the fuzzy color model, a novel fuzzy clustering algorithm for efficient partition of color data is developed.

A transformed input-domain approach to fuzzy modeling-KL transform approch (입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식)

  • 김은태;박민기;이수영;박민용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

Design of Reinforcement Learning Controller with Self-Organizing Map (자기 조직화 맵을 이용한 강화학습 제어기 설계)

  • 이재강;김일환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.353-360
    • /
    • 2004
  • This paper considers reinforcement learning control with the self-organizing map. Reinforcement learning uses the observable states of objective system and signals from interaction of the system and environment as input data. For fast learning in neural network training, it is necessary to reduce learning data. In this paper, we use the self-organizing map to partition the observable states. Partitioning states reduces the number of learning data which is used for training neural networks. And neural dynamic programming design method is used for the controller. For evaluating the designed reinforcement learning controller, an inverted pendulum on the cart system is simulated. The designed controller is composed of serial connection of self-organizing map and two Multi-layer Feed-Forward Neural Networks.