cDNA microarray experiments permit us to investigate the expression levels of thousands of genes simultaneously and to make it easy to compare gene expression from different populations. However, researchers are asked to be cautious in interpreting the results because of the unexpected sources of variation such as systematic errors from the microarrayer and the difference of cDNA dye intensity. And the scanner itself calculates both of mean and median of the signal and background pixels, so it follows a selection which raw data will be used in analysis. In this paper, we compare the results in each case of using mean and median from the raw data and normalization methods in reducing the systematic errors with arm's skin cells of old and young males. Using median is preferable to mean because the distribution of the test statistic (t-statistic) from the median is more close to normal distribution than that from mean. Scaled print tip normalization is better than global or lowess normalization due to the distribution of the test-statistic.
본 연구에서 저장탄약 신뢰성평가(ASRP: Ammunition Stockpile Reliability Program)의 데이터 특성을 고려하여 입력변수를 줄이는 정규화기법을 제안함으로써 분류성능의 저하 없이 저장탄약 신뢰성분류 인경신경망모델의 학습 속도향상을 목표로 하였다. 탄약의 성능에 대한 기준은 국방규격(KDS: Korea Defense Specification)과 저장탄약 시험절차서(ASTP: Ammunition Stockpile reliability Test Procedure)에 규정되어 있으며, 평가결과 데이터는 이산형과 연속형 데이터가 복합적으로 구성되어 있다. 이러한 저장탄약 신뢰성평가의 데이터 특성을 고려하여 입력변수는 로트 추정 불량률(estimated lot percent nonconforming) 또는 고장률로 정규화 하였다. 또한 입력변수의 unitary hypercube를 유지하기 위하여 최소-최대 정규화를 2차로 수행하는 2단계 정규화 기법을 제안하였다. 제안된 2단계 정규화 기법은 저장탄약 신뢰성평가 데이터를 이용하여 비교한 결과 최소-최대 정규화와 유사하게 AUC(Area Under the ROC Curve)는 0.95 이상이었으며 학습속도는 학습 데이터 수와 은닉 계층의 노드 수에 따라 1.74 ~ 1.99 배 향상되었다.
This paper presents a heuristic algorithm for classifying vehicles using a single loop detector. The data used for the development of the algorithm are the frequency variation of a vehicle sensored from the circle-shaped loop detectors which are normal buried beneath the expressway. The pre-processing of data is required for the development of the algorithm that actually consists of two parts. One is both normalization of occupancy time and that with frequency variation, the other is finding of an adaptable number of sample size for each vehicle category and calculation of average value of normalized frequencies along with occupancy time that will be stored for comparison. Then, detected values are compared with those stored data to locate the most fitted pattern. After the normalization process, we developed some frameworks for comparison schemes. The fitted scales used were 10 and 15 frames in occupancy time(X-axis) and 10 and 15 frames in frequency variation (Y-axis). A combination of X-Y 10-15 frame turned out to be the most efficient scale of normalization producing 96 percent correct classification rate for six types of vehicle.
In this paper, we propose an effective compression method for electrocardiogram(ECG) signals. 1-D ECG signals are reconstructed to 2-D ECG data by period and complexity sorting schemes with image compression techniques to Increase inter and intra-beat correlation. The proposed method added block division and mean-period normalization techniques on top of conventional 2-D data ECG compression methods. JPEG 2000 is chosen for compression of 2-D ECG data. Standard MIT-BIH arrhythmia database is used for evaluation and experiment. The results show that the proposed method outperforms compared to the most recent literature especially in case of high compression rate.
This paper examines the statistical process that should be performed with caution in the composite material qualification and equivalency process, and describes statistically significant considerations on outlier finding and handling process, data pooling through normalization process, review for data distributions and design allowables determination process for structural analysis. Based on these considerations, the need for guidance on statistical process for aircraft manufacturers who use the composite material properties database are proposed.
표지 유전자는 특정한 실험 조건의 특성을 나타내주는 발현수준의 유전자를 의미한다. 이 유전자들은 여러 집단간의 발현수준에서 유의한 차이를 보여주며, 실제로 집단 간의 차이를 유발하는 유전자일 확률이 높아 특정 생물학적 현상과 관련 있는 표지 유전자를 찾는 연구에 이용될 수 있다. 본 논문에서는, 먼저 그 동안 제안된 여러 표준화 방법들 중에서 가장 널리 사용되고 있는 방법들을 이용하여 데이터를 표준화 한 후 통계에 따라 유전자의 우선순위를 정함으로써 표지유전자를 추출할 수 있는 시스템을 제안하였다. 다층퍼셉트론 신경망 분류기를 이용하여 각 표준화 방법들의 성능을 비교분석하였다. 그 결과 Lowess 표준화 후 ANOVA를 이용하여 선택된 8개의 표지 유전자를 포함하는 마이크로어레이 데이터 셋에 MLP 알고리즘을 적용한 결과 99.32%의 가장 높은 분류 정확도와 가장 낮은 예측 에러 추정치를 나타내었다.
We developed a new program for automatic continuum normalization of Echelle spectrographic data. Using this algorithm, we have determined spectral continuum of almost BOES data. The first advantage of this algorithm is that we can save much time for continuum determination and normalization. The second advantage is that the result of this algorithm is very reliable for almost spectral type of spectrum. But this algorithm cannot be applied directly to the spectrum which has very strong and broad emission lines, for example Wolf-Rayet type spectrum. We implanted this algorithm to the program which was developed in the previous study. And we introduced more upgraded BOES data reduction program. This program has more convenient graphical user interface environment, so users can easily reduce BOES data. Lastly, we presented the result of study on line profile variation of magnetic Ap/Bp stars analyzed using this program.
본 논문에서는 불균일한 클러터 환경에서 다양한 정규화 방법을 사용한 NHD(nonhomogeneity detector) 기술을 통해 비행체 레이더를 위한 STAP(space-time adaptive processing)의 성능 평가를 수행하였다. 실제로 클러터는 시스템 환경에 따라 임펄스 신호와 같은 신호의 크기가 매우 큰 간섭 신호를 종종 포함하고 있기 때문에 수신된 간섭 신호는 균일한 신호와 불균일한 신호로 구성된다. 이 환경에서 STAP의 성능을 유지하기 위해서는 NHD 기술이 필수적이고, 그 NHD 결과를 이용한 정규화는 불균일한 신호를 제거하는데 효과적인 방법이다. 최적의 정규화는 주어진 데이터의 특성을 잘 고려한 대푯값을 통해서 가능하고, 이에 우리는 K 평균 군집화 알고리즘을 제안한다. 이 알고리즘에서는 군집화에 필요한 묶음의 수를 결정할 때 불규칙한 데이터의 특성을 고려할 수 있게 되고 군집화 된 결과를 이용해 균일한 데이터만을 선택하기 위한 대푯값을 결정할 수 있게 된다. 또한 여기서 우리는 시시각각 변화하는 불규칙적인 데이터의 특성을 잘 반영하기 위해, 적절한 묶음의 수를 결정하기 위한 방법을 연구한다. 시뮬레이션 결과를 통해 K 평균 군집화 알고리즘이 기존의 정규화 방법들에 비하여 매우 우수한 정규화와 목표물 검출 성능을 갖는 것을 확인할 수 있었다.
Image normalization is one of the important areas in pattern recognition. Also, log-polar images are useful in the sense that their image data size is reduced dramatically comparing with conventional images and it is possible to develop faster pattern recognition algorithms. Especially, the log-polar image is very similar with the structure of human eyes. However, there are almost no researches on pattern recognition using the log-polar images while a number of researches on visual tracking have been executed. We propose an image normalization technique of log-polar images using momentums applicable for affine-invariant pattern recognition. We handle basic distortions of an image including translation, rotation, scaling, and skew of a log-polar image. The algorithm is experimented in a PC-based real-time vision system successfully.
This paper presents a floating point arithmetic unit (FPAU) for supescalar microprocessor that executes fifteen operations such as addition, subtraction, data format converting, and compare operation using two pipelined arithmetic paths and new rounding and normalization scheme. By using two pipelined arithmetic paths, each aritchmetic operation can be assigned into appropriate arithmetic path which high speed operation is possible. The proposed normalization an rouding scheme enables the FPAU to execute roundig operation in parallel with normalization and to reduce timing delay of post-normalization. And by predicting leading one position of results using input operands, leading one detection(LOD) operation to normalize results in the conventional arithmetic unit can be eliminated. Because the FPAU can execuate fifteen single-precision or double-precision floating-point arithmetic operations through three-stage pipelined datapath and support IEEE standard 754, it has appropriate structure which can be ingegrated into superscalar microprocessor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.