• Title/Summary/Keyword: data network

Search Result 18,308, Processing Time 0.054 seconds

Risk Factors of Socio-Demographic Variables to Depressive Symptoms and Suicidality in Elderly Who Live Alone at One Urban Region (일 도시지역의 독거노인에 있어서 우울증상 및 자살경향성에 영향을 미치는 인구학적 변인에 대한 고찰)

  • Park, Hoon-Sub;Oh, Hee-jin;Kwon, Min-Young;Kang, Min-Jeong;Eun, Tae-Kyung;Seo, Min-Cheol;Oh, Jong-Kil;Kim, Eui-Joong;Joo, Eun-Jeong;Bang, Soo-Young;Lee, Kyu Young
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.23 no.1
    • /
    • pp.36-46
    • /
    • 2015
  • Objectives: To understand the risk factors of demographic data in geriatric depression scale, and suicidality among in elderly who live alone at one urban region. Methods:In 2009, 589 elderly who live alone(age${\geq}$65) were carried out a survey about several socio-demographic data, Korean version of the Geriatric Depression Scale(SGDS-K) and Suicidal Ideation Questionnaire (SIQ). Statistical analysis was performed for the collected data. Results: Mean age of elderly who live alone is 75.69(SD 6.17). 40.1% of participants uneducated, 31.4% graduate from elementary school, 12.9% graduate from high school, 11.7% graduate from middle school, 3.2% graduate from university. Religionless, having past history of depression or physical diseases, low subjective satisfaction of family situation, and not having any social group activity have significance to depressive symptoms of elderly who live alone. Having past history of depression, religionless, low subjective satisfaction of family situation have significance to suicidality. Especially, low subjective satisfaction of family situation and having past history of depression are powerful demographic factor both depressive symptoms and suicidality of elderly who live alone. Conclusions: When we take care elderly who live alone, we should consider many things, but especially the social support network such as family satisfaction and past history of depression for reducing or preventing their depression and suicide both elderly depression and suicide who live alone.

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

Professional Baseball Viewing Culture Survey According to Corona 19 using Social Network Big Data (소셜네트워크 빅데이터를 활용한 코로나 19에 따른 프로야구 관람문화조사)

  • Kim, Gi-Tak
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.139-150
    • /
    • 2020
  • The data processing of this study focuses on the textom and social media words about three areas: 'Corona 19 and professional baseball', 'Corona 19 and professional baseball', and 'Corona 19 and professional sports' The data was collected and refined in a web environment and then processed in batch, and the Ucinet6 program was used to visualize it. Specifically, the web environment was collected using Naver, Daum, and Google's channels, and was summarized into 30 words through expert meetings among the extracted words and used in the final study. 30 extracted words were visualized through a matrix, and a CONCOR analysis was performed to identify clusters of similarity and commonality of words. As a result of analysis, the clusters related to Corona 19 and Pro Baseball were composed of one central cluster and five peripheral clusters, and it was found that the contents related to the opening of professional baseball according to the corona 19 wave were mainly searched. The cluster related to Corona 19 and unrelated to professional baseball consisted of one central cluster and five peripheral clusters, and it was found that the keyword of the position of professional baseball related to the professional baseball game according to Corona 19 was mainly searched. Corona 19 and the cluster related to professional sports consisted of one central cluster and five peripheral clusters, and it was found that the keywords related to the start of professional sports according to the aftermath of Corona 19 were mainly searched.

Gridding of Automatic Mountain Meteorology Observation Station (AMOS) Temperature Data Using Optimal Kriging with Lapse Rate Correction (기온감률 보정과 최적크리깅을 이용한 산악기상관측망 기온자료의 우리나라 500미터 격자화)

  • Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.715-727
    • /
    • 2023
  • To provide detailed and appropriate meteorological information in mountainous areas, the Korea Forest Service has established an Automatic Mountain Meteorology Observation Station (AMOS) network in major mountainous regions since 2012, and 464 stations are currently operated. In this study, we proposed an optimal kriging technique with lapse rate correction to produce gridded temperature data suitable for Korean forests using AMOS point observations. First, the outliers of the AMOS temperature data were removed through statistical processing. Then, an optimized theoretical variogram, which best approximates the empirical variogram, was derived to perform the optimal kriging with lapse rate correction. A 500-meter resolution Kriging map for temperature was created to reflect the elevation variations in Korean mountainous terrain. A blind evaluation of the method using a spatially unbiased validation sample showed a correlation coefficient of 0.899 to 0.953 and an error of 0.933 to 1.230℃, indicating a slight accuracy improvement compared to regular kriging without lapse rate correction. However, the critical advantage of the proposed method is that it can appropriately represent the complex terrain of Korean forests, such as local variations in mountainous areas and coastal forests in Gangwon province and topographical differences in Jirisan and Naejangsan and their surrounding forests.

A Study on Differences of Contents and Tones of Arguments among Newspapers Using Text Mining Analysis (텍스트 마이닝을 활용한 신문사에 따른 내용 및 논조 차이점 분석)

  • Kam, Miah;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.53-77
    • /
    • 2012
  • This study analyses the difference of contents and tones of arguments among three Korean major newspapers, the Kyunghyang Shinmoon, the HanKyoreh, and the Dong-A Ilbo. It is commonly accepted that newspapers in Korea explicitly deliver their own tone of arguments when they talk about some sensitive issues and topics. It could be controversial if readers of newspapers read the news without being aware of the type of tones of arguments because the contents and the tones of arguments can affect readers easily. Thus it is very desirable to have a new tool that can inform the readers of what tone of argument a newspaper has. This study presents the results of clustering and classification techniques as part of text mining analysis. We focus on six main subjects such as Culture, Politics, International, Editorial-opinion, Eco-business and National issues in newspapers, and attempt to identify differences and similarities among the newspapers. The basic unit of text mining analysis is a paragraph of news articles. This study uses a keyword-network analysis tool and visualizes relationships among keywords to make it easier to see the differences. Newspaper articles were gathered from KINDS, the Korean integrated news database system. KINDS preserves news articles of the Kyunghyang Shinmun, the HanKyoreh and the Dong-A Ilbo and these are open to the public. This study used these three Korean major newspapers from KINDS. About 3,030 articles from 2008 to 2012 were used. International, national issues and politics sections were gathered with some specific issues. The International section was collected with the keyword of 'Nuclear weapon of North Korea.' The National issues section was collected with the keyword of '4-major-river.' The Politics section was collected with the keyword of 'Tonghap-Jinbo Dang.' All of the articles from April 2012 to May 2012 of Eco-business, Culture and Editorial-opinion sections were also collected. All of the collected data were handled and edited into paragraphs. We got rid of stop-words using the Lucene Korean Module. We calculated keyword co-occurrence counts from the paired co-occurrence list of keywords in a paragraph. We made a co-occurrence matrix from the list. Once the co-occurrence matrix was built, we used the Cosine coefficient matrix as input for PFNet(Pathfinder Network). In order to analyze these three newspapers and find out the significant keywords in each paper, we analyzed the list of 10 highest frequency keywords and keyword-networks of 20 highest ranking frequency keywords to closely examine the relationships and show the detailed network map among keywords. We used NodeXL software to visualize the PFNet. After drawing all the networks, we compared the results with the classification results. Classification was firstly handled to identify how the tone of argument of a newspaper is different from others. Then, to analyze tones of arguments, all the paragraphs were divided into two types of tones, Positive tone and Negative tone. To identify and classify all of the tones of paragraphs and articles we had collected, supervised learning technique was used. The Na$\ddot{i}$ve Bayesian classifier algorithm provided in the MALLET package was used to classify all the paragraphs in articles. After classification, Precision, Recall and F-value were used to evaluate the results of classification. Based on the results of this study, three subjects such as Culture, Eco-business and Politics showed some differences in contents and tones of arguments among these three newspapers. In addition, for the National issues, tones of arguments on 4-major-rivers project were different from each other. It seems three newspapers have their own specific tone of argument in those sections. And keyword-networks showed different shapes with each other in the same period in the same section. It means that frequently appeared keywords in articles are different and their contents are comprised with different keywords. And the Positive-Negative classification showed the possibility of classifying newspapers' tones of arguments compared to others. These results indicate that the approach in this study is promising to be extended as a new tool to identify the different tones of arguments of newspapers.

The Role of Social Capital and Identity in Knowledge Contribution in Virtual Communities: An Empirical Investigation (가상 커뮤니티에서 사회적 자본과 정체성이 지식기여에 미치는 역할: 실증적 분석)

  • Shin, Ho Kyoung;Kim, Kyung Kyu;Lee, Un-Kon
    • Asia pacific journal of information systems
    • /
    • v.22 no.3
    • /
    • pp.53-74
    • /
    • 2012
  • A challenge in fostering virtual communities is the continuous supply of knowledge, namely members' willingness to contribute knowledge to their communities. Previous research argues that giving away knowledge eventually causes the possessors of that knowledge to lose their unique value to others, benefiting all except the contributor. Furthermore, communication within virtual communities involves a large number of participants with different social backgrounds and perspectives. The establishment of mutual understanding to comprehend conversations and foster knowledge contribution in virtual communities is inevitably more difficult than face-to-face communication in a small group. In spite of these arguments, evidence suggests that individuals in virtual communities do engage in social behaviors such as knowledge contribution. It is important to understand why individuals provide their valuable knowledge to other community members without a guarantee of returns. In virtual communities, knowledge is inherently rooted in individual members' experiences and expertise. This personal nature of knowledge requires social interactions between virtual community members for knowledge transfer. This study employs the social capital theory in order to account for interpersonal relationship factors and identity theory for individual and group factors that may affect knowledge contribution. First, social capital is the relationship capital which is embedded within the relationships among the participants in a network and available for use when it is needed. Social capital is a productive resource, facilitating individuals' actions for attainment. Nahapiet and Ghoshal (1997) identify three dimensions of social capital and explain theoretically how these dimensions affect the exchange of knowledge. Thus, social capital would be relevant to knowledge contribution in virtual communities. Second, existing research has addressed the importance of identity in facilitating knowledge contribution in a virtual context. Identity in virtual communities has been described as playing a vital role in the establishment of personal reputations and in the recognition of others. For instance, reputation systems that rate participants in terms of the quality of their contributions provide a readily available inventory of experts to knowledge seekers. Despite the growing interest in identities, however, there is little empirical research about how identities in the communities influence knowledge contribution. Therefore, the goal of this study is to better understand knowledge contribution by examining the roles of social capital and identity in virtual communities. Based on a theoretical framework of social capital and identity theory, we develop and test a theoretical model and evaluate our hypotheses. Specifically, we propose three variables such as cohesiveness, reciprocity, and commitment, referring to the social capital theory, as antecedents of knowledge contribution in virtual communities. We further posit that members with a strong identity (self-presentation and group identification) contribute more knowledge to virtual communities. We conducted a field study in order to validate our research model. We collected data from 192 members of virtual communities and used the PLS method to analyse the data. The tests of the measurement model confirm that our data set has appropriate discriminant and convergent validity. The results of testing the structural model show that cohesion, reciprocity, and self-presentation significantly influence knowledge contribution, while commitment and group identification do not significantly influence knowledge contribution. Our findings on cohesion and reciprocity are consistent with the previous literature. Contrary to our expectations, commitment did not significantly affect knowledge contribution in virtual communities. This result may be due to the fact that knowledge contribution was voluntary in the virtual communities in our sample. Another plausible explanation for this result may be the self-selection bias for the survey respondents, who are more likely to contribute their knowledge to virtual communities. The relationship between self-presentation and knowledge contribution was found to be significant in virtual communities, supporting the results of prior literature. Group identification did not significantly affect knowledge contribution in this study, inconsistent with the wealth of research that identifies group identification as an important factor for knowledge sharing. This conflicting result calls for future research that examines the role of group identification in knowledge contribution in virtual communities. This study makes a contribution to theory development in the area of knowledge management in general and virtual communities in particular. For practice, the results of this study identify the circumstances under which individual factors would be effective for motivating knowledge contribution to virtual communities.

  • PDF

Analysis of Interactions in Multiple Genes using IFSA(Independent Feature Subspace Analysis) (IFSA 알고리즘을 이용한 유전자 상호 관계 분석)

  • Kim, Hye-Jin;Choi, Seung-Jin;Bang, Sung-Yang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.157-165
    • /
    • 2006
  • The change of external/internal factors of the cell rquires specific biological functions to maintain life. Such functions encourage particular genes to jnteract/regulate each other in multiple ways. Accordingly, we applied a linear decomposition model IFSA, which derives hidden variables, called the 'expression mode' that corresponds to the functions. To interpret gene interaction/regulation, we used a cross-correlation method given an expression mode. Linear decomposition models such as principal component analysis (PCA) and independent component analysis (ICA) were shown to be useful in analyzing high dimensional DNA microarray data, compared to clustering methods. These methods assume that gene expression is controlled by a linear combination of uncorrelated/indepdendent latent variables. However these methods have some difficulty in grouping similar patterns which are slightly time-delayed or asymmetric since only exactly matched Patterns are considered. In order to overcome this, we employ the (IFSA) method of [1] to locate phase- and shut-invariant features. Membership scoring functions play an important role to classify genes since linear decomposition models basically aim at data reduction not but at grouping data. We address a new function essential to the IFSA method. In this paper we stress that IFSA is useful in grouping functionally-related genes in the presence of time-shift and expression phase variance. Ultimately, we propose a new approach to investigate the multiple interaction information of genes.

Accessibility Analysis in Mapping Cultural Ecosystem Service of Namyangju-si (접근성 개념을 적용한 문화서비스 평가 -남양주시를 대상으로-)

  • Jun, Baysok;Kang, Wanmo;Lee, Jaehyuck;Kim, Sunghoon;Kim, Byeori;Kim, Ilkwon;Lee, Jooeun;Kwon, Hyuksoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.367-377
    • /
    • 2018
  • A cultural ecosystem service(CES), which is non-material benefit that human gains from ecosystem, has been recently further recognized as gross national income increases. Previous researches proposed to quantify the value of CES, which still remains as a challenging issue today due to its social and cultural subjectivity. This study proposes new way of assessing CES which is called Cultural Service Opportunity Spectrum(CSOS). CSOS is accessibility based CES assessment methodology for regional scale and it is designed to be applicable for any regions in Korea for supporting decision making process. CSOS employed public spatial data which are road network and population density map. In addition, the results of 'Rapid Assessment of Natural Assets' implemented by National Institute of Ecology, Korea were used as a complementary data. CSOS was applied to Namyangju-si and the methodology resulted in revealing specific areas with great accessibility to 'Natural Assets' in the region. Based on the results, the advantages and limitations of the methodology were discussed with regard to weighting three main factors and in contrast to Scenic Quality model and Recreation model of InVEST which have been commonly used for assessing CES today due to its convenience today.

OD matrix estimation using link use proportion sample data as additional information (표본링크이용비를 추가정보로 이용한 OD 행렬 추정)

  • 백승걸;김현명;신동호
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.83-93
    • /
    • 2002
  • To improve the performance of estimation, the research that uses additional information addition to traffic count and target OD with additional survey cost have been studied. The purpose of this paper is to improve the performance of OD estimation by reducing the feasible solutions with cost-efficiently additional information addition to traffic counts and target OD. For this purpose, we Propose the OD estimation method with sample link use proportion as additional information. That is, we obtain the relationship between OD trip and link flow from sample link use proportion that is high reliable information with roadside survey, not from the traffic assignment of target OD. Therefore, this paper proposes OD estimation algorithm in which the conservation of link flow rule under the path-based non-equilibrium traffic assignment concept. Numerical result with test network shows that it is possible to improve the performance of OD estimation where the precision of additional data is low, since sample link use Proportion represented the information showing the relationship between OD trip and link flow. And this method shows the robust performance of estimation where traffic count or OD trip be changed, since this method did not largely affected by the error of target OD and the one of traffic count. In addition to, we also propose that we must set the level of data precision by considering the level of other information precision, because "precision problem between information" is generated when we use additional information like sample link use proportion etc. And we Propose that the method using traffic count as basic information must obtain the link flow to certain level in order to high the applicability of additional information. Finally, we propose that additional information on link have a optimal counting location problem. Expecially by Precision of information side it is possible that optimal survey location problem of sample link use proportion have a much impact on the performance of OD estimation rather than optimal counting location problem of link flow.

Analysis of the Effects of Radio Traffic Information on Urban Worker's Travel Choice Behavior (교통방송이 제공하는 교통정보가 직장인의 통행행태에 미치는 영향 분석)

  • 윤대식
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.33-43
    • /
    • 2002
  • Travel choice behavior is affected by real-time traffic information. Recently, in urban area, real-time traffic information is provided by several instruments such as transportation broadcasting, internet PC network and variable message sign, etc. Furthermore, it has been increasing for urban travelers to use real-time traffic information provided by several instruments. The purpose of this study is to analyze the effects of advanced traveler information on urban worker's travel choice behavior. Among several Advanced Traveler Information System(ATIS) employed in urban area. This study focuses on examining the effects of transportation broadcasting on urban worker's travel choice behavior. This study attempts to examine traveler's mode change behavior in the pre-trip stage and traveler's route change behavior in the on-route stage. For this study, the survey data collected from Daegu City in 2000 is used. For empirical analysis, several nested logit models are estimated, and among them, the best models are reported in this paper. Furthermore, based on the empirical models estimated for this research, important findings and their policy implications are discussed.