Journal of Korean Society for Geospatial Information Science
/
v.16
no.3
/
pp.105-110
/
2008
The cross-section data are generally used for hydraulic and hydrologic modeling. However, when the detailed data of river channel are required, it is not available to use because of too wide distance of the offset between cross-sections. Also, the actual form of river channel cannot be reflected with the general interpolation methods which is considering straight line between acquired points. The aim of this paper is to present an algorithm which is to interpolate point using bilinear method and to estimate random cross-section between two surveyed cross-section data. And it is supposed that the proposed algorithm can be able to offer available data for hydraulic and hydrologic modeling.
For regulatory approval of a new drug, the most preferred and reliable source of evidence would be randomized controlled trials (RCT). However, a great number of drugs, being developed as well as already marketed and being used, usually lack proper indications for children. It is imperative to develop properly evaluated drugs for children. And expanding the use of already approved drugs for other indications will benefit patients and the society. Nevertheless, to get an approval for expansion of indications, most often with off-label experiences, for drugs that have been approved or for the development of pediatric indications, either during or after completing the main drug development, conducting RCTs may not be the only, if not right, way to take. Extrapolation strategies and modelling & simulation for pediatric drug development are paving the road to the better approval scheme. Making the use of data sources other than RCT such as EHR and claims data in ways that improve the efficiency and validity of the results (e.g., randomized pragmatic trial and randomized registry trial) has been the topic of great interest all around the world. Regulatory authorities should adopt new methodologies for regulatory approval processes to adapt to the changes brought by increasing availability of big and real world data utilizing new tools of technological advancement.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.19
no.1
/
pp.75-85
/
2021
Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.
This study investigates to provide a fast solution to the problem of bearing capacity in layered soils with easily obtainable parameters that does not require the use of any charts or calculations of different parameters. Therefore, a hybrid approach including both the finite element (FE) method and machine learning technique have been applied. Firstly, a FE model has been generated which is validated by the results of in-situ loading tests. Then, a total of 192 three-dimensional FE analyses have been performed. A data set has been created utilizing the soil properties, footing sizes, layered conditions used in the FE analyses and the ultimate bearing capacity values obtained from the FE analyses to be used in multigene genetic programming (MGGP). Problem has been modeled with five input and one output parameter to propose a bearing capacity formula. Ultimate bearing capacity values estimated from the proposed formula using data set consisting of 20 data independent of total data set used in MGGP modelling have been compared to the bearing capacities calculated with semi-empirical methods. It was observed that the MGGP method yielded successful results for the problem considered. The proposed formula provides reasonable predictions and efficient enough to be used in practice.
Lee, Hyo-Sang;Jeon, Min-Woo;Balin, Daniela;Rode, Michael
Journal of Korea Water Resources Association
/
v.42
no.10
/
pp.773-783
/
2009
The effects of rainfall input uncertainty on predictions of stream flow are studied based extended GLUE (Generalized Likelihood Uncertainty Estimation) approach. The uncertainty in the rainfall data is implemented by systematic/non-systematic rainfall measurement analysis in Weida catchment, Germany. PDM (Probability Distribution Model) rainfall runoff model is selected for hydrological representation of the catchment. Using general correction procedure and DUE(Data Uncertainty Engine), feasible rainfall time series are generated. These series are applied to PDM in MC(Monte Carlo) and GLUE method; Posterior distributions of the model parameters are examined and behavioural model parameters are selected for simplified GLUE prediction of stream flow. All predictions are combined to develop ensemble prediction and 90 percentile of ensemble prediction, which are used to show the effects of uncertainty sources of input data and model parameters. The results show acceptable performances in all flow regime, except underestimation of the peak flows. These results are not definite proof of the effects of rainfall uncertainty on parameter estimation; however, extended GLUE approach in this study is a potential method which can include major uncertainty in the rainfall-runoff modelling.
In order to improve the productivity and quality of boat's mold in leisure boat industry, the development of modelling and machining technology of leisure boat's plug is strongly required. The traditional lines drawing approach by hand required the designer to both create fair curves and to make sure that the curves matched up to each other in the three main drawing views: profile, plan, and section. However, one will find when studying lines drawings in books that the curves might look smooth and fair, but the lines do not agree exactly in the three views. Therefore, the 2 dimensional drawing data of leisure boat are transformed using 3 dimensional design s/w and CAM s/w. In addition, the leisure boat is designed with a 3 dimensional s/w. The NC cutting data are generated by the CAM s/w. The surface characteristics of machined surface are investigated at various cutting conditions such as spindle speed, feed speed, and cutting material.
This paper proposes an algorithm for automatically converting and displaying rainfall radar data on a 3D GIS platform. The weather information displayed like rainfall radar data is updated frequently and large-scale. Thus, in order to efficiently display the data, an algorithm to convert and output the data automatically, rather than manually, is required. In addition, since rainfall data is extracted from the space, the use of the display image fused with the 3D GIS data representing the space enhances the visibility of the user. To meet these requirements, this study developed the Auto Data Converter application that analyzes the raw data of the rainfall radar and convert them into a universal format. In addition, Unity 3D, which has good development accessibility, was used for dynamic 3D implementation of the converted rainfall radar data. The software applications developed in this study could automatically convert a large volume of rainfall data into a universal format in a short time and perform 3D modeling effectively according to the data conversion on the 3D platform. Furthermore, the rainfall radar data could be merged with other GIS data for effective visualization.
LEMY, Diena Mutiara;NURSIANA, Adinoto;PRAMONO, Rudy
The Journal of Asian Finance, Economics and Business
/
v.7
no.12
/
pp.501-508
/
2020
The focus of this research was on Bali, Indonesia as an international tourist destination. The survey strategy involved self-administered questionnaires distributed to collect data and information supporting this research. The sampling method was non-probability convenience purposive sampling, which means that only those respondents who had visited Bali as a destination for more than two times for their holiday by the time the research was conducted were eligible to fill in the questionnaires. There were 300 questionnaires distributed, only 254 of which were valid. Interview was also conducted for data collection in this research. The structural equation modelling approach was used to analyze the data obtained from respondents, who had visited Bali at least two times. The outcomes of this research reveal a positive influence of push and pull motivational factors on tourist satisfaction. Moreover, a positive, significant correlation between satisfaction and destination loyalty can be seen in this research. With the aim to sustain and enhance destination competitiveness, the results of this research will be beneficial for stakeholders of Bali as a destination. This study helps stakeholders identify push and pull motivational factors in order to better prepare marketing strategies and utilize indicators of push and pull motivation that affect tourists' experience during their stay.
In this paper, four formulas are proposed via gene expression programming (GEP)-based models and regression analysis (RA) to predict the flexural strength ($f_s$) values of mortars containing different mineral admixtures that are ground granulated blast-furnace slag (GGBFS), silica fume (SF) and fly ash (FA) at different ages. Three formulas obtained from the GEP-I, GEP-II and GEP-III models are constituted to predict the $f_s$ values from the age of specimen, water-binder ratio and compressive strength. Besides, one formula obtained from the RA is constituted to predict the $f_s$ values from the compressive strength. To achieve these formulas in the GEP and RA models, 972 data of the experimental studies presented with mortar mixtures were gathered from the literatures. 734 data of the experimental studies are divided without pre-planned for these formulas achieved from the training and testing sets of GEP and RA models. Beside, these formulas are validated with 238 data of experimental studies un-employed in training and testing sets. The $f_s$ results obtained from the training, testing and validation sets of these formulas are compared with the results obtained from the experimental studies and the formulas given in the literature for concrete. These comparisons show that the results of the formulas obtained from the GEP and RA models appear to well compatible with the experimental results and find to be very credible according to the results of other formulas.
Korean Journal of Construction Engineering and Management
/
v.2
no.2
s.6
/
pp.90-97
/
2001
The paper considers non-deterministic methods of analysing the risk exposure in a cost estimate. The method(referred to as the 'Monte Carlo simulation' method) interprets cost data indirectly, to generate a probability distribution for total costs from the deficient elemental experience cost distribution. The Monte Carlo method is popular method for incorporating uncertainty relative to parameter values in risk assessment modelling. Non-deterministic methods, they are here presented as possibly effective foundation on which to risk management in cost estimating. The objectives of this research is to develop a computerized algorithms to forecast the probabilistic total construction cost and the elemental work cost at the planning stage.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.