본 연구의 목적은 '복압성 요실금'을 키워드로 검색된 연구들의 경향과 특성을 단어 빈도를 통해 분석하고, 워드 임베딩을 사용하여 그 관계를 모델링 하고자 하였다. 의학 서지 데이터베이스인 MEDLINE에 등록되어 있는 복압성 요실금 연구 9,868개 논문들의 초록 문자 데이터를 Python 프로그램을 이용하여 추출하였다. 그런 다음 빈도 분석을 통해 10개의 키워드를 선택하였다. 키워드 관련 단어들의 유사도는 Word2Vec 머신러닝 알고리즘으로 분석하였다. 그리고, t-SNE 기법을 사용하여 단어의 위치와 거리가 시각화하였고, 이에 따라 그룹을 분류하여 이를 분석하였다. 복압성 요실금과 관련된 연구는 1980년대 이후 빠르게 증가했다. 키워드 분석을 통해 논문 초록에서 가장 많이 사용된 키워드는 '여성', '요도', '수술'로 나타났다. Word2Vec 모델링을 통해 복압성 요실금 관련 연구에서 주요 키워드들과 가장 높은 연관성을 나타내는 단어들에는 '여성', '절박', '증상' 등이 있었다. 그리고, t-SNE 기법을 통해 키워드와 관련 단어들은 복압성 요실금의 증상, 신체 기관의 해부학적 특성, 그리고 수술적 중재를 중심으로 하는 3개의 그룹으로 분류될 수 있었다. 본 연구는 초록을 구성하는 단어들의 키워드 빈도 분석 및 워드임베딩 방식을 이용하여 복압성 요실금 관련 연구들의 동향을 살펴본 최초의 연구이다. 본 연구의 결과는 향후 연구자들이 복압성 요실금 관련 연구 분야의 주제와 방향성을 선택하는 데 있어 기초자료로 활용될 수 있을 것이다.
다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.
본 연구에서는 급격히 증가하는 인터넷망 및 분산(distribution) 컴퓨팅 환경을 이용한 서버/클라이언트(server/client) MT자료 처리 시스템의 구축을 위한 여러 가지 기술적 사항에 대해 논의하였다. 이러한 시스템은 표준적인 처리 방식의 도입과 인증된 자료 처리 서버에서의 해석 수행을 통해 일관성과 안정성을 동시에 제공할 수 있을 것이다. 또한 인터넷망을 이용하여 현장에서의 자료해석이 가능해지므로 탐사 시간, 경비의 감소 및 추가 탐사 계획 수립에도 도움을 줄 것이다. 각종 자바 기술(pure java와 enterprised java)은 네트워크 프로그램을 손쉽게 개발할 수 있는 많은 방법들을 제공한다. 본 연구에서는 이를 이용하여 웹(web)에 의한 서버/클라이언트 모델과, 소켓(Socket) 및 원격 함수 호출(RMI: Remote Method Invocation) 에 의한 처리 기법을 MT자료의 해석에 적용하기 위한 방법에 대해 논하였다. 또한 MT자료의 특성상, 그 해석은 고성능의 컴퓨터를 이용하였을 때에도 상당한 시간을 필요로 하므로 이를 극복하기 위해 서버 프로그램에 MPI(Message Passing Interface) 병렬처리 기술을 적용하고자 한다. 이는 고가의 병렬 처리 컴퓨터를 대체할 수 있으며, 표준적인 코딩이 제시되었으므로 관리 및 유지, 보수에 있어 효율성을 제공할 것이다.
본 최근 코로나19로 인해 비대면 상황이 장기간 지속화됨에 따라 사회 전반에 걸쳐 IOT, AR, VR, 빅데이터와 같은 4차 산업 혁명의 기반 기술이 메타버스 플랫폼에 전반적으로 영향을 미치고 있다. 이러한 사회, 문화 등 외부 환경의 변화는 학문의 발전에 영향을 미칠 수 있으며, 변화에 대비하여 기존 성과물을 체계적으로 정리하는 일은 매우 중요하다. 한국 교육학술정보원(RISS)에서 키워드에 '메타버스 플랫폼'을 포함하는 자료를 수집하여 빅데이터 분석 중 하나인 텍스트 마이닝 기법을 사용하였다. 수집된 데이터 자료를 워드 클라우드 빈도 분석, 키워드 간 연결강도, 구조등위성 분석을 하여 메타버스 플랫폼 연구 동향을 살펴보았다. 연구결과 워드 클라우드 분석에서는 '활용', '디지털', '기술', '교육' 순으로 키워드가 나타났다. 키워드 간 연결강도(N-gram) 분석 결과 '에듀→테크'의 연결강도가 가장 높게 나타났으며, 워드 연쇄 군집 수의 총 3개의 군집이 도출되었다. 세부 연구영역은 '디지털 기술'을 포함 다섯 영역으로 분류되었다. 종합적으로 고려했을 때 메타버스 플랫폼 분야의 학문적 연구 주제 범위는 그리 넓지 않았으며, 장기 지향적 관점에서 보다 적극적인 연구 주제의 발굴 및 논의가 필요해 보인다.
정보통신기술의 발전과 디지털 기기의 대중화로 인해, 온라인 시장의 규모가 커지고 있다. 그 결과 고객들은 상품을 선택하는데 많은 시간과 비용이 소요되는 정보 과부하(Information Overload) 문제에 직면하고 있다. 따라서 고객이 선호할만한 상품을 추천해 주는 추천 시스템은 필수적인 도구가 되었으며 협업 필터링(Collaborative Filtering) 기법은 가장 널리 쓰이는 추천 방법이다. 전통적인 추천 시스템은 평점과 같은 정량적인 데이터만을 사용하기 때문에 추천의 정확도는 높지 않다. 이와 같은 문제를 해결하기 위해 요즘에는 사용자 리뷰와 같은 정성적 데이터를 반영하는 연구가 활발히 진행되고 있다. 협업 필터링의 일반적인 절차는 사용자-상품 행렬 생성, 이웃 집단 탐색, 추천 목록 생성 3단계로 구성되며 코사인 같은 사용자 유사도를 사용하여 목표 고객의 이웃을 탐색하며, 추천 상품 목록을 생성한다. 본 연구에서는 이웃 집단 탐색 및 추천 목록 생성 단계에서 사용하는 사용자 간의 유사도를 기존의 사용자 평점을 이용한 유사도에 고객의 리뷰 데이터를 사용하는 확장된 사용자 유사도를 제시한다. 리뷰를 정량화 하기 위해 본 연구에서는 텍스트 마이닝을 활용한다. 즉, 리뷰 데이터에 TF-IDF, Word2Vec, 그리고 Doc2Vec 기법을 사용하여 두 사용자 간의 리뷰 유사도를 구한 후 사용자 평점을 사용한 유사도와 리뷰 유사도를 결합한 확장된 유사도를 생성하는 것이다. 이를 검증하기 위해 전자상거래 사이트인 Amazon의 'Health and Personal Care'의 사용자 평점과 리뷰 데이터를 사용하였다. 실험 결과, 사용자 간 유사도를 산출할 때 기존의 평점에 기반한 유사도만을 사용하는 것보다, 사용자 리뷰의 유사도를 추가로 반영한 확장된 유사도를 사용하면 추천의 정확도가 높아진다는 것을 확인했다. 또한, 여러 텍스트 마이닝 기법 중에서 TF-IDF 기법을 사용한 확장된 유사도를 이웃 집단 탐색 및 추천 목록 생성단계에서 사용할 때의 성능이 가장 좋게 나타났다.
현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.
불법현금융통 적발모형 개발에 앙상블 접근방법을 사용하였다. 불법현금융통은 국내 신용카드사의 손익에 영향을 미치며 최근 국제화되고 있음에도 불구하고 학문적인 접근이 이루어지지 않았다. 부정행위 적발모형(Fraud Detection Model, FDM)은 데이터 불균형 문제로 인하여 좋은 성능을 얻기 어려운데, 다수의 모형을 결합하는 앙상블이 대안으로 제시되어 왔다. 앙상블에 포함된 모형들의 다양성이 보장된다면 단일모형에 비해 더 좋은 성능을 보인다는 점은 이미 인정되고 있으며, 최근 연구 결과는 학습된 모든 기본모형들을 사용하는 것보다 적절한 기본모형들만 선택하여 앙상블에 포함시키는 것이 바람직하다는 것이다. 본 논문에서는 효과적인 불법현금융통 적발을 위하여 축소된 앙상블 기법을 사용하는데, 정확성과 다양성 척도를 사용하여 앙상블에 참여할 기본모형을 선택하는 것이다. 다양성은 앙상블을 구성하는 기본모형들 사이의 불일치 (Disagreement or Ambiguity)를 의미하는데, FDM에 내재된 데이터 불균형문제를 고려하여 두 가지 측면에 중점을 두었다. 첫째, 학습 자료의 추출 과정에서 다양성을 확보하기 위한 소수 범주의 과잉추출 방법과 적절한 훈련 방법에 대해 설명하였다. 둘째, 소수범주에 초점을 맞추어 기존의 다양성 척도를 효과적인 척도로 변형시키고, 전진추가법과 후진소거법의 동적 다양성 계산법을 도입하여 앙상블에 참여할 기본모형을 평가하였다. 실험에 사용된 학습 알고리즘은 신경망, 의사결정수와 로짓 회귀분석이었으며, 동질적 앙상블과 이질적 앙상블을 구성하여 성능평가를 하였다. 실험결과 불법현금융통 적발모형에 있어 축소된 앙상블은 모든 기본모형이 포함된 앙상블과 성능 차이가 없었다. 축소된 앙상블은 앙상블 구성의 복잡성을 감소시키고 구현을 용이하게 한다는 점에서 FDM에서도 유력한 모형 수립 접근방법이 될 수 있음을 보였다.
최근, 인공신경망 모델은 예측, 수치제어, 로봇제어, 패턴인식 등의 분야에서 촉망되는 기술이다. 본 연구에서는 인공신경망 모델을 이용하여 온실 외부 온도를 예측하고 이를 온실제어에 활용하는데 목적이 있다. 예측 모델의 성능 평가를 위해 다중회귀모델과 SVM 모델과의 비교분석을 수행하였다. 평가 방법으로는 10-Fold Cross Validation을 사용하였으며, 예측 성능 향상을 위해 상관관계분석 통해 데이터 축소를 수행하였고, 측정 데이터로부터 새로운 Factor 추출하여 데이터의 신뢰성을 확보하였다. 인공신경망 구축을 위해 Backpropagation algorithm을 사용하였으며, 다중회귀모델은 M5 method로 구축하였고, SVM 모델을 epsilon-SVM으로 구축하였다. 각 모델의 비교분석 결과 각각 0.9256, 1.8503과 7.5521로 나타났다. 또한 예측모델을 온실 난방부하 계산에 적용함으로써 온실에 사용되는 에너지 비용 절감을 통한 수입증대에 기여할 수 있다. 실험한 온실의 난방부하는 3326.4kcal/h이며, 총 난방시간이 $10000^{\circ}C/h$일 때 연료소비량은 453.8L로 예측된다. 아울러 데이터 마이닝 기술 중 하나인 인공신경망을 정밀온실제어, 재배기법, 수확예측 등 다양한 농업 분야에 적용함으로써 스마트 농업으로의 발전에 기여할 수 있다.
본 연구는 시뮬레이션을 이용하여 외래프로세스를 개선하여 기관 운영의 효율성을 높이고자 수행되었다. 3가지의 시나리오를 설정하여 시뮬레이션 분석을 수행하였으며 외래환자 전체 체류시간, 대기시간, 이동시간, 진료시간, 직원 활용도 지표를 비교하여 시나리오에 따른 외래프로세스의 효율성을 평가하였다. 병원의 진료자료를 수집하여 통계도구와 프로세스 마이닝 도구를 이용하여 분석하였다. 그리고 시뮬레이션 툴인 PIOS를 이용하여 모형의 타당성은 t-test로 검증하였다. 시뮬레이션 분석 결과, 센터제로 운영하는 경우의 외래프로세스가 가장 효율성이 높은 것으로 나타났다. 이를 볼 때 외래환자에 대해서는 센터제 형태로 운영되는 것이 기관의 효율성을 높이는 방안이라는 것을 확인할 수 있었다. 본 연구를 통하여 시뮬레이션이 최적의 외래프로세스를 선정하는데 활용될 수 있는 방법이라는 것을 확인할 수 있었다. 시뮬레이션을 이용하면 과거 경험, 감정, 직관에 의존하는 기존의 보건의료 관리 기법에 비해 효율적인 의사 결정을 지원하는 방법이라는 것을 알 수 있다. 따라서 본 연구에서 제시한 연구 모델은 보건 의료 시스템 상에 다양한 활용이 가능할 것으로 보인다.
지음향 모델링은 퇴적층과 기반암의 해저 지층을 통해 전파되는 음파 특성을 예측하기 위해 사용된다. 이 연구는 동해 한국대륙주변부의 정동진 해역에서 50 m 퇴적층 심도의 4개 지음향 모델을 구성하였다. 지층 모델은 고해상 에어건 탄성파 자료, SBP 자료, 퇴적물 코어에 근거한다. P파 속도는 신호투과법에 의해 측정되었고, 압전기 트랜스듀서의 공진 중심 주파수는 1 MHz를 유지하였다. 42개 P파 속도와 41개 음감쇠 측정이 세 개 코어 퇴적물에서 수행되었다. 실제 모델링을 위해, 모델의 P파 속도는 Hamilton 방법을 이용하여 해저면 아래 현장 심도 속도로 보정하였다. 연안 지층의 이 지음향 모델은 동해 정동진 해역에서 지음향 특성의 수직/수평 변화를 반영하는 지음향/수중음향 실험을 위해 활용될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.