• Title/Summary/Keyword: data mining(CHAID)

Search Result 32, Processing Time 0.017 seconds

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.