데이터마이닝 패키지에 구현된 분류나무 알고리즘 가운데 CART, CHAID, QUEST, C4.5에서 변수 선택법을 비교하였다. CART의 전체탐색법이 편의를 갖는다는 사실은 잘알려졌으며, 여기서는 상품화된 패키지들에서 이들 알고리즘의 편의와 선택력을 모의실험 연구를 통하여 비교하였다. 상용 패키지로는 CART, Enterprise Miner, AnswerTree, Clementine을 사용하였다. 본 논문의 제한된 모의실험 연구 결과에 의하면 C4.5와 CART는 모두 변수선택에서 심각한 편의를 갖고 있으며, CHAID와 QUEST는 비교적 안정된 결과를 보여주고 있었다.
Patient revisit to used hospital is a key factor in determining a health care organization's competitive advantage and survival. This article examines the relationship between customer's satisfaction and his/her revisit associated with three different methods which are the Chi Square Automatic Interaction Detection(CHAID) for segmenting the outpatient group, logistic regression and neural networks for addressing the outpatient's revisit. The main findings indicate that the important factors on outpatient's revisit are physician's kindness, nurse's skill, overall level of satisfaction, hospital reputation, recommendation, level of diagnoses and outpatient's age. Among these ones, physician's kindness is the most important factor as guidelines for decision of their revisit. The decision maker of hospital should select the strategy containing the variable amount of the level of revisit and size of outpatient's group under the constraint on the hospital's time, budget and manpower given. Finally, this study shows that neural networks, as non-parametric technique, appear to more correctly predict revisit than does logistic regression as a parametric estimation technique.
Many researches and analyses have been focused on industrial accidents in order to predict and reduce them. As a similar endeavor, this paper is to develop an expert system for prevention of industrial accidents. Although various previous studies have been performed to prevent industrial accidents, these studies only provide managerial and educational policies using frequency analysis and comparative analysis based on data from past industrial accidents. As an initial step for the purpose of this study, this paper provides a comparative analysis of 4 kinds of algorithms including CHAID, CART, C4.5, and QUEST. Decision tree algorithm is utilized to predict results using objective and quantified data as a typical technique of data mining. Enterprise Miner of SAS and Answer Tree of SPSS will be used to evaluate the validity of the results of the four algorithms. The sample for this work was chosen from 10,536 data related to manufacturing industries during three years$(2002\sim2004)$ in korea. The initial sample includes a range of different businesses including the construction and manufacturing industries, which are typically vulnerable to industrial accidents.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.35
no.5
/
pp.415-422
/
2017
Finding influential factors from given clustering result is a typical data science problem. Genetic Algorithm based method is proposed to derive influential factors and its performance is compared with two conventional methods, Classification and Regression Tree (CART) and Chi-Squared Automatic Interaction Detection (CHAID), by using Dunn's index measure. To extract the influential factors of preference towards political parties in South Korea, the vote result of $18^{th}$ presidential election and 'Demographic', 'Health and Welfare', 'Economic' and 'Business' related data were used. Based on the analysis, reverse engineering was implemented. Implementation of reverse engineering based approach for influential factor analysis can provide new set of influential variables which can present new insight towards the data mining field.
Proceedings of the Korea Inteligent Information System Society Conference
/
2002.11a
/
pp.203-212
/
2002
This study examined the predictive power of data mining algorithms by comparing the performance of logistic regression and decision tree algorithm, called CHAID (Chi-squared Automatic Interaction Detection), On the contrary to the previous studies, decision tree performed better than logistic regression. We have also developed a CDSS (Clinical Decision Support System) with three modules (doctor, nurse, and patient) based on data warehouse architecture. Data warehouse collects and integrates relevant information from various databases from hospital information system (HIS ). This system can help improve decision making capability of doctors and improve accessibility of educational material for patients.
The purpose of this study was to examine demographic, human capital and service factors affecting employment outcomes of people with hearing impairments. The total of 422 individuals (age from 20 years to 65 years) with hearing impairments were collected from the Panel Survey of Employment for the Disabled from Korea Employment Agency for the Disabled. The dependent variable is employment outcomes. The predictor variables include a set of personal history, human capital and rehabilitation service variables. The chi-squared automatic interaction detector (CHAID) analysis revealed that the status of the national basic livelihood security played a determining role in predicting the employment of people with hearing impairments. Also, it was found that the three factors of the status on the national basic livelihood security, needed help about activities of dailey living, licenses & employment service factors created bigger synergy effect when they inter-complemented one another.
This study deals with actual commuting distance and influence of risk factors depending on commuting distance and mode in order to reestablish actual commuting zone of primary school students. Data mining analysis(CHAID) was applied for this reestablishment using survey results from 6,927 primary school students in Seoul Metro. Six risk factors; convenience level of commuting path condition, convenience level of road crossing condition, vehicle speed on commuting path, segregation level between commuter and vehicle, congestion level of commuting path, and public security level and two mode; walking and cycle are considered in the analysis. As the results of CHAID analysis, commuting distance was divided into four zones; Internal Zone(0.491km under), External Zone(0.492 ~ 1.492km, 1.493 ~ 2.699km), Commutable Zone(2.70km over), and awareness level on safety is declined as commuting distance is increased. The risk factor affecting on safety is recognized differently by students depending on commuting distance and mode. For students commuting by walking, vehicle speed on commuting path and convenience level of commuting path condition are recognized as the prime risk factor within Internal Zone and Commutable Zone, respectively. For students commuting by cycle, convenience level of road crossing condition and vehicle speed on commuting path are recognized as the prime risk factor within Commutable Zone. Analysis results show that improved plan and program for commuting path for primary school students are required considering actual commuting distance and method.
This paper aims at developing a prediction model and analyzing a sensitivity for the outpatient's overall satisfaction on utilizing hospital services by using data mining techniques within the context of customer satisfaction. From a total of 900 outpatient cases, 80 percent were randomly selected as the training group and the other 20 percent as the validation group. Cases in the training group were used in the development of the CHAID and Neural Networks. The validation group was used to test the performance of these models. The major findings may be summarized as follows: the CHAID provided six useful predictors - satisfaction with treatment level, satisfaction with healthcare facilities and equipments, satisfaction with registration service, awareness of hospital reputation, satisfaction with staffs courtesy and responsiveness, and satisfaction with nurses kindness. The prediction accuracy rates based on MLP (77.90%) is superior to RBF (76.80%).
Proceedings of the Safety Management and Science Conference
/
2006.04a
/
pp.51-56
/
2006
Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare performance of algorithms for data analysis of industrial accidents and this paper provides a comparative analysis of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. In this study, data on 67,278 accidents were analyzed to create risk groups for a number of complications, including the risk of disease and accident. The sample for this work chosen from data related to manufacturing industries during three years $(2002\sim2004)$ in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.13
no.4
/
pp.63-72
/
2014
With the rapid development in the economy and other fields as well, the standard of living in South Korea has been improved, and consequently, the demand of automobiles has quickly increased. It leads to various traffic issues such as traffic congestion, traffic accident, and parking problem. In particular, this illegal parking caused by the increase in the number of automobiles has been considered one of the main reasons to bring about traffic congestion as intensifying any dispute between neighbors in relation to a parking space, which has been also coming to the fore as a social issue. Therefore, this study looked into Daejeon Metropolitan City, the city that is understood to have the highest automobile sharing rate in South Korea but with relatively few cases of illegal parking crackdowns. In order to investigate the theoretical problems of the illegal parking, this study conducted a decision-making tree model-based Exhaustive CHAID analysis to figure out not only what makes drivers park illegally when they try to park vehicles but also those factors that would tempt the drivers into the illegal parking. The study, then, comes up with solutions to the problem. According to the analysis, in terms of the influential factors that encourage the drivers to park at some illegal areas, it was learned that these factors, the distance, a driver's experience of getting caught, the occupation and the use time in order, have an effect on the drivers' deciding to park illegally. After working on the prediction model, four nodes were finally extracted. Given the analysis result, as a solution to the illegal parking, it is necessary to establish public parking lots additionally and first secure the parking space for the vehicles used for living and working, and to activate the campaign for enhancing illegal parking crackdown and encouraging civic consciousness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.