• Title/Summary/Keyword: data interpolation

Search Result 1,025, Processing Time 0.027 seconds

Soil Depth Information DB Construction Methods for Liquefaction Assessment (액상화 평가를 위한 지층심도DB 구축 방안)

  • Gang, ByeongJu;Hwang, Bumsik;Kim, Hansam;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2019
  • The liquefaction is a phenomenon that the effective stress becomes zero due to the rapidly accumulated excess pore water pressure when a strong load acts on the ground for a short period of time, such as an earthquake or pile driving, resulting in the loss of the shear strength of the ground. Since the Geongju and Pohang earthquake, liquefaction brought increasing domestic attention. This liquefaction can be assessed mainly through the semi-empirical procedures proposed by Seed and Idriss (1982) and the liquefaction risk based on the penetration resistance obtained from borehole DB and SPT. However, the geotechnical information data obtained by the in-situ tests or boring information fundamentally have an issue of the representative of the target area. Therefore, this study sought to construct a ground information database by classifying and reviewing the ground information required for liquefaction assessment, and tried to solve the representative problem of the soil layer that is subject to liquefaction evaluation by performing spatial interpolation using GIS.

Determination of the Optimal Spatial Interpolation Methods for Estimating Missing Precipitation Data in Not Covered Area by Climate Change Scenario (기후변화시나리오 데이터 누락지역의 강수자료 보완을 위한 최적 공간보간기법 선정)

  • Jang, Dong Woo;Park, Hyo Seon;Choi, Jin Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.14-14
    • /
    • 2015
  • 공간보간기법은 미계측지역의 강수예측을 위해 통상적으로 사용되는 방법 중의 하나이다. 이 연구에서는 기상청에서 제공하고 있는 RCP 8.5 시나리오에 의한 남한상세 강수자료 중 지형이 복잡한 도서지역에서 제공되지 않는 데이터 누락격자에 대하여 최적의 공간보간기법을 선정하여 강수자료를 생성할 수 있도록 하였다. 적합한 보간기법을 선정하기 위해 데이터 누락지역에 대한 분석을 수행하였고, 최신 행정구역도에 맞추어 $1km{\times}1km$ 격자를 한반도 전체지역에 맞추어 생성된 격자를 사용하였다. ESRI사의 ArcGIS 프로그램을 이용하여 공간보간기법을 적용하였다. 사용된 보간법은 역거리가중치법(IDW), 정규크리깅(Ordinary Kriging), 보편크리깅(Universal Kriging), 스플라인(Spline)이며 가장 적합한 공간보간기법을 선정하기 위해 기후변화시나리오에 의한 데이터 중 해안선 주변 특정격자에서의 값을 누락시켜 공간보간기법을 통해 생성된 값과 기후변화 시나리오에 의한 값을 정량적으로 비교하였다. 공간보간기법의 적합도 평가를 위해 MAE(Mean Absolute Error), MSE(Mean Squared Error), PBIAS(Percent of BIAS), G(goodness of prediction) 분석을 수행하였고, 산점도 분석을 통해 실제값과 보간값의 오차율 평가를 병행하여 최적 공간보간기법을 결정하였다. 사용된 강수데이터는 RCP 8.5 시나리오에서 2015~2019년 중 강수가 높게 나타난 8월 자료를 이용하였다. 해안선 지역의 강수량 추정시 역거리 가중치법과 크리깅방법은 일부 지점에서 과다 추정되는 경향이 있고, 스플라인 방법이 전체적인 총 강수량이 기후변화시나리오에 의한 실제값과 유사한 것으로 나타났다. 실제값과 보간값의 교차검증을 수행한 결과 정규크리깅 기법이 가장 높은 정확도를 보였으며, 전체적으로 실제값과 유사한 범위내의 강수량이 생성되는 것으로 나타났다.

  • PDF

Application of Artificial Neural Network to Flamelet Library for Gaseous Hydrogen/Liquid Oxygen Combustion at Supercritical Pressure (초임계 압력조건에서 기체수소-액체산소 연소해석의 층류화염편 라이브러리에 대한 인공신경망 학습 적용)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2021
  • To develop an efficient procedure related to the flamelet library, the machine learning process based on artificial neural network(ANN) is applied for the gaseous hydrogen/liquid oxygen combustor under a supercritical pressure condition. For hidden layers, 25 combinations based on Rectified Linear Unit(ReLU) and hyperbolic tangent are adopted to find an optimum architecture in terms of the computational efficiency and the training performance. For activation functions, the hyperbolic tangent is proper to get the high learning performance for accurate properties. A transformation learning data is proposed to improve the training performance. When the optimal node is arranged for the 4 hidden layers, it is found to be the most efficient in terms of training performance and computational cost. Compared to the interpolation procedure, the ANN procedure reduces computational time and system memory by 37% and 99.98%, respectively.

Super-Resolution Transmission Electron Microscope Image of Nanomaterials Using Deep Learning (딥러닝을 이용한 나노소재 투과전자 현미경의 초해상 이미지 획득)

  • Nam, Chunghee
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.345-353
    • /
    • 2022
  • In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256 × 256 pixels (high resolution: HR) from TEM measurements and 32 × 32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.

Image Restoration using Pattern of Non-noise Pixels in Impulse Noise Environments (임펄스 잡음 환경에서 비잡음 화소의 패턴을 사용한 영상복원)

  • Cheon, Bong-Won;Kim, Marn-Go;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.407-409
    • /
    • 2021
  • Under the influence of the 4th industrial revolution, various technologies such as artificial intelligence and automation are being grafted into industrial sites, and accordingly, the importance of data processing is increasing. Digital images may generate noise due to various reasons, and may affect various systems such as image recognition and classification and object tracking. To compensate for these shortcomings, we propose an image restoration algorithm based on pattern information of non-noise pixels. According to the distribution of non-noise pixels inside the filtering mask, the proposed algorithm switched the filtering process by dividing the interpolation method into a pattern that can be applied, a pattern based on region division, and a randomly arranged pixel pattern. preserves and restores the image. The proposed algorithm showed superior performance compared to the existing impulse noise removal algorithm.

  • PDF

Effects of loading frequency and specimen size on the liquefaction resistance of clean sand

  • Sung-Sik Park;Dong-Eun Lee;Dong-Kiem-Lam Tran
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • This study investigates the effects of loading frequency (f) and specimen size on the liquefaction resistance of clean sand. A series of cyclic direct simple shear tests were conducted on Jumunjin sand with varying consolidated relative densities (40% and 80%), f values (0.05, 0.10, and 0.20 Hz), and diameter to height (D/H) ratios (3.63, 3.18, 2.82, and 2.54). The results demonstrated the significant influence of f and D/H ratio on the number of cycles to liquefaction (Ncyc-liq) and the cyclic resistance ratio (CRR15). It was observed that increasing f linearly increased Ncyc-liq. Increasing the specimen height also led to higher Ncyc-liq values irrespective of the f or relative density. Moreover, a positive correlation between CRR15 and f indicated that higher f yielded higher CRR15. This relationship was more pronounced in dense sand than in loose sand. Specimen height also significantly affected CRR15, with increasing the specimen height resulting in higher CRR15 values. Furthermore, the effect of f on CRR15 was less significant compared to the influence of specimen height. The effect of f on the normalized cyclic resistance ratio (NCRR) was relatively negligible for loose sand but more substantial for dense sand depending on the D/H ratio. Data analysis revealed that the NCRR generally decreases as the D/H ratio increases. An interpolation formula was provided to calculate the NCRR based on the D/H ratio regardless of the f and relative density.

Effects of hygro-thermal environment on dynamic responses of variable thickness functionally graded porous microplates

  • Quoc-Hoa Pham;Phu-Cuong Nguyen;Van-Ke Tran
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.563-581
    • /
    • 2024
  • This paper presents a novel finite element model for the free vibration analysis of variable-thickness functionally graded porous (FGP) microplates resting on Pasternak's medium in the hygro-thermal environment. The governing equations are established according to refined higher-order shear deformation plate theory (RPT) in construction with the modified couple stress theory. For the first time, three-node triangular elements with twelve degrees of freedom for each node are developed based on Hermitian interpolation functions to describe the in-plane displacements and transverse displacements of microplates. Two laws of variable thickness of FGP microplates, including the linear law and the nonlinear law in the x-direction are investigated. Effects of thermal and moisture changes on microplates are assumed to vary continuously from the bottom surface to the top surface and only cause tension loads in the plane, which does not change the material's mechanical properties. The numerical results of this work are compared with those of published data to verify the accuracy and reliability of the proposed method. In addition, the parameter study is conducted to explore the effects of geometrical and material properties such as the changing law of the thickness, length-scale parameter, and the parameters of the porosity, temperature, and humidity on the free vibration response of variable thickness FGP microplates. These results can be applied to design of microelectromechanical structures in practice.

Kriging of Daily PM10 Concentration from the Air Korea Stations Nationwide and the Accuracy Assessment (베리오그램 최적화 기반의 정규크리깅을 이용한 전국 에어코리아 PM10 자료의 일평균 격자지도화 및 내삽정확도 검증)

  • Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Seoyeon;Kim, Geunah;Kang, Jonggu;Lee, Dalgeun;Chung, Euk;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.379-394
    • /
    • 2021
  • Air pollution data in South Korea is provided on a real-time basis by Air Korea stations since 2005. Previous studies have shown the feasibility of gridding air pollution data, but they were confined to a few cities. This paper examines the creation of nationwide gridded maps for PM10 concentration using 333 Air Korea stations with variogram optimization and ordinary kriging. The accuracy of the spatial interpolation was evaluated by various sampling schemes to avoid a too dense or too sparse distribution of the validation points. Using the 114,745 matchups, a four-round blind test was conducted by extracting random validation points for every 365 days in 2019. The overall accuracy was stably high with the MAE of 5.697 ㎍/m3 and the CC of 0.947. Approximately 1,500 cases for high PM10 concentration also showed a result with the MAE of about 12 ㎍/m3 and the CC over 0.87, which means that the proposed method was effective and applicable to various situations. The gridded maps for daily PM10 concentration at the resolution of 0.05° also showed a reasonable spatial distribution, which can be used as an input variable for a gridded prediction of tomorrow's PM10 concentration.

Spatial Distribution Characteristics of Vertical Temperature Profile in the South Sea of Jeju, Korea (제주 남부해역 수온 수직구조의 공간분포 특성 파악)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.162-174
    • /
    • 2012
  • To visualize the characteristics of vertical seawater temperature data, in the ocean having 3D spatial characteristics, 2D thematic maps like horizontal seawater temperature distribution map at each depth layer and 3D volume model using 3D spatial interpolation are used. Although these methods are useful to understand oceanographic phenomena visually, there is a limit to analyze the spatial pattern of vertical temperature distribution or the relationship between vertical temperature characteristics and other oceanic factors (seawater chemistry, marine organism, climate change, etc). Therefore, this study aims to determine the spatial distribution characteristics of vertical temperature profiles in the South Sea of Jeju by quantifying the characteristics of vertical temperature profiles by using an algorithm that can extract the thermocline parameters, such as mixed layer depth, maximum temperature gradient and thermocline thickness. For this purpose spatial autocorrelation index (Moran's I) was calculated including mapping of spatial distribution for three parameters representing the vertical temperature profiles. Also, after grouping study area as four regions by using cluster analysis with three parameters, the characteristics of vertical temperature profiles were defined for each region.

Prediction of Wind Damage Risk based on Estimation of Probability Distribution of Daily Maximum Wind Speed (일 최대풍속의 추정확률분포에 의한 농작물 강풍 피해 위험도 판정 방법)

  • Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.130-139
    • /
    • 2017
  • The crop damage caused by strong wind was predicted using the wind speed data available from Korean Meteorological Administration (KMA). Wind speed data measured at 19 automatic weather stations in 2012 were compared with wind data available from the KMA's digital forecast. Linear regression equations were derived using the maximum value of wind speed measurements for the three-hour period prior to a given hour and the digital forecasts at the three-hour interval. Estimates of daily maximum wind speed were obtained from the regression equation finding the greatest value among the maximum wind speed at the three-hour interval. The estimation error for the daily maximum wind speed was expressed using normal distribution and Weibull distribution probability density function. The daily maximum wind speed was compared with the critical wind speed that could cause crop damage to determine the level of stages for wind damage, e.g., "watch" or "warning." Spatial interpolation of the regression coefficient for the maximum wind speed, the standard deviation of the estimation error at the automated weather stations, the parameters of Weibull distribution was performed. These interpolated values at the four synoptic weather stations including Suncheon, Namwon, Imsil, and Jangsu were used to estimate the daily maximum wind speed in 2012. The wind damage risk was determined using the critical wind speed of 10m/s under the assumption that the fruit of a pear variety Mansamgil would begin to drop at 10 m/s. The results indicated that the Weibull distribution was more effective than the normal distribution for the estimation error probability distribution for assessing wind damage risk.