• Title/Summary/Keyword: data injector

Search Result 137, Processing Time 0.032 seconds

Analysis on the Research and Development Cases of Combustion Devices with Liquid-Liquid Pintle Injector (액체-액체 핀틀 분사기 적용 연소장치 개발 사례 분석)

  • Hwang, DoKeun;Ryu, Chulsung;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.126-142
    • /
    • 2020
  • This study aims to provide basic design data for a pintle injector and its combustion device through case study on the research and development of combustion devices to which a liquid-liquid pintle injector was applied. From data analysis, it was possible to provide the initial dimension of the combustion chamber and pintle injector based on the engine thrust, and the geometric characteristics of the high-efficiency injector. In addition, the pintle tip heat damage prevention mechanism and materials, face-shutoff pintle injector implementation method, and central propellant selection criteria were summarized. Theses results will be used as basic data for the design criteria of an initial pintle injector combustion device.

Experimental Study of the Role of Gas-Liquid Scheme Injector as an Acoustic Resonator in a Combustion Chamber

  • Kim Hak-Soon;Sohn Chae-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.896-904
    • /
    • 2006
  • In a liquid rocket engine, the role of gas-liquid scheme injector as an acoustic resonator or absorber is studied experimentally for combustion stability by adopting linear acoustic test. The acoustic-pressure signals or responses from the chamber are monitored by acoustic amplitude. Acoustic behavior in a rocket combustor with a single injector is investigated and the acoustic-damping effect of the injector is evaluated for cold condition by the quantitative parameter of damping factor as a function of injector length. From the experimental data, it is found that the injector can play a significant role in acoustic damping when it is tuned finely. The optimum tuning-length of the injector to maximize the damping capacity is near half of a full wavelength of the first longitudinal overtone mode traveling in the injector with the acoustic frequency intended for damping in the chamber. When the injector has large diameter, the phenomenon of the mode split is observed near the optimum injector length and thereby, the acoustic-damping effect of the tuned injectors can be degraded.

Power Supply and Control System for Injector of Ion Accelerator (이온 가속기의 인젝터 전원 장치 및 제어 시스템)

  • Im, Geun-Hui;Nikiforov, S.A.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.544-549
    • /
    • 1997
  • Injector of high voltage or linear ion accelerator is intended to generate, extract and form beam of certain species with required parameters at the entrance of accelerating structure or, for low energy case, directly in the processing chamber (end station). Injector is the main part defining the ion accelerator performance and reliability. Its power supply and control system (PSCS) features are conditioned by placing the injector equipment at high voltage potential and by complexity of the plasma-beam load. The injector's PSCS should provide: - Transmission of electric power onto high voltage (h/v) terminal; - Obtaining of required output characteristics for injector equipment operation; - Transmission of the operational data and start/stop signals from h/v terminal to control cabinet; - Rremote control of injector; - Withstanding the high voltage breakdowns and X-ray radiation; - Compatibility with other equipment. The paper is concerned with analysis of injectors' PSCS structure and description of the system developed for 50 keV, 20 mA heavy ion injector.

  • PDF

A CFD ANALYSIS OF LIQUID PROPELLANT INJECTOR FOR PERFORMANCE ENHANCEMENT OF SMALL THRUSTER (소형 추진기의 성능 개선을 위한 액체 추진제 주입기의 전산유체해석)

  • Lee, Se-Min;Park, Soo-Hyung;Kim, Sung-Kyun;Byun, Do-Young;Yu, Myoung-Jong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.130-134
    • /
    • 2009
  • CFD analysis of the fuel injection pattern and the flow field surrounding the liquid propellant injector of a small thruster is performed. A good agreement is shown with PIV test data for the initial configuration. Analysis on various injector shapes is performed to observe the effect of injector shape on the trajectories of liquid droplet. A various shapes of injector is investigated to enhance spray pattern of the small injector.

  • PDF

A Study on the Model of an HSDI Common-Rail Injector and the Estimation of Needle Lift (HSDI Common-Rail 인젝터 모델링 및 니들 변위 추정에 관한 연구)

  • 성경훈;박승범;선우명호;나형규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2002
  • This paper presents the process of the needle lift estimation ova common-rail injector fur HSDI(High Speed Direct Injection) diesel engines. A nonlinear mathematical model of dynamic behaviors of common-rail injector is established at first. Based on the mathematical model of the common-rail injector, the methodology of estimating the injector needle lift is introduced. A sliding mode observer is applied to overcome the model uncertainties. The common-rail injector model and the needle lift estimator are verified by simulations and experiments. The simulation and experimental results indicate that the model outputs are in a good agreement with experimental data, and the proposed nonlinear sliding observer can effectively estimate the needle lift.

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.

A Study on the Performance Evaluation of Dual Swirl Injectors (Dual Swirl 인젝터의 성능 평가에 관한 연구)

  • 김선진;정해승
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.113-123
    • /
    • 2003
  • Both numerical analysis and experiment of cold and hot tests were performed to obtain basic design data for the swirl coaxial type Injector and to predict the combustion performance. Mass distribution, mixing distribution, mixing efficiency, characteristic velocity efficiency were measured by the cold tests and numerical analysis using the commercial thermo-hydraulic program. Test and analysis variables were recess, pressure drop, velocity ratio, mixing spray, mixture ratio. Hot tests were performed for the Uni-element injector to compare the performance with the cold test results, and, hot tests for Multi-element injector were performed to compare the performance with Uni-element injector. Designed thrust of the Uni-element injector liquid rocket was 35kgf at sea level and combustion chamber pressure, 20bar. Kerosene and Lox were used as a propellant.

Study on the Spray Characteristics of a Port Fuel Injector for a Gasoline Engine (가솔린엔진용 포트분사식 인젝터의 분무특성에 관한 연구)

  • Lee, Sang-In;Lee, Sung-Won;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.61-66
    • /
    • 2010
  • Fuel spray characteristics of the gasoline engine injector has been studied experimentally. To provide fundamental performance data of 4-hole and 12-hole injectors, spray fuel-mass distribution, wall wetting fuel amount and visualization of injectors have been tested and measured with various fuel supply pressure conditions. Spray visualization has been performed to analyze spray formation, spray angle, stream width and penetration length. Test result shows that wall wetting is greatly influenced by the induction air amount and spray atomization. Spray visualization shows that the 12-hole injector has robust performance characteristics with various fuel supply pressure conditions compared with the 4-hole injector. 4-hole injector generates relatively less wall-wetting fuel amount than 12-hole injector does.

Experimental Investigation for Multi-Element Dual Swirl Coaxial Injector (다중요소 Dual Swirl 인젝터에 관한 실험적 연구)

  • Shin, Hun-Cheol;Lee, Seock-Chin;Park, Hee-Ho;Kim, Sun-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.137-144
    • /
    • 2006
  • The basic data obtained in this research for single element performance were directly applied to the design of injector head(7 elements). Designed performance of the 7-element Swirl Coaxial injector was $245kg_f$ sea level thrust with 20bar combustion chamber pressure. Numerical analysis were performed to obtain the change of spray pattern for the design of injector head, and we confirmed the feasibility and application of those results. Hot tests were performed for the multi-element injector to compare with the performance of the single element injector and those can be applied to the design of scaled liquid rocket engine. The basic data obtained in this research can be directly applied to the real liquid rocket injector design.

Effect of Swirl Injector with Multi-Stage Tangential Entry on Acoustic Damping in Liquid Rocket Engine (액체로켓에서 다단 접선 유입구를 갖는 스월인젝터의 음향학적 감쇠기능)

  • ;;;;Bazarov, V. G.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.71-79
    • /
    • 2006
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. The interior air core shape of injector is more stable in the case of using the swirl injector with multi-stage entry than with single-stage entry. Also, when the swirl injector with multi-stage entry is used, tuned-injector length for unstable mode is well agreed with the calculated length. From the experimental data, it is proved that if the interior air core shape of swirl injector is stable, the fine tuned swirl injector can decrease the unstable mode of model chamber effectively and increase the damping rate.