• 제목/요약/키워드: data fragmentation

Search Result 262, Processing Time 0.022 seconds

Apoptotic Effect of Co-Treatment with Chios Gum Mastic and Eugenol on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line (사람혀편평세포암종세포에서 Chios gum mastic과 eugenol의 병용처리가 미치는 세포자멸사 효과에 관한 연구)

  • Sohn, Hyeon-Jin;Yea, Byeong-Ho;Kim, In-Ryoung;Park, Bong-Soo;Jeong, Sung-Hee;Ahn, Yong-Woo;Ko, Myung-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.3
    • /
    • pp.147-160
    • /
    • 2011
  • Eugenol (4-allyl-2-methoxyphenol) is a natural phenolic constituent extensively used in dentistry as a component of zinc oxide eugenol cement and is applied to the mouth environment. Chios gum mastic (CGM) is a resinous exudate obtained from the stem and the main leaves of Pistacia lenticulus tree native to Mediterranean areas. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with a natural product, CGM and natural phenolic compound, eugenol on SCC25 human tongue squamous cell carcinoma cell line. To investigate whether the co-treatment with eugenol and CGM compared to each single treatment efficiently reduces the viability of SCC25 cells, MTT assay was conducted. Induction and augmentation of apoptosis were confirmed by Hoechst staining, TUNEL staining and DNA hypoploidy. Westen blot analysis and immunofluorescent staining were performed to study the alterations of the expression level and the translocation of apoptosis-related proteins in co-treatment. In this study, co-treatment of with eugenol and CGM on SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensations, DNA fragmentation, the increase and decrease of Bax and Bcl-2, decrease of DNA content, the release of cytochrome c into cytosol, translocation of AIF and DFF40 (CAD) onto nuclei, and activation of caspase-3, caspase-6 caspase-7, caspase-9, PARP, Lamin A/C and DFF45 (ICAD) whereas each single treated SCC25 cells did not show or very slightly these patterns. Although the single treatment of 40 ${\mu}g$/ml CGM and 0.5 mM eugenol for 24 h did not induce apoptosis, the co-treatment of these reagents prominently induced apoptosis. Therefore our data provide the possibility that combination therapy with CGM and eugenol could be considered as a novel therapeutic strategy for human oral squamous cell carcinoma.

Apoptotic Effect of Pinosylvin at a High Concentration Regulated by c-Jun N-Terminal Kinase in Bovine Aortic Endothelial Cells (혈관내피세포에서 c-Jun N-terminal kinase에 의해 조절되는 세포사멸에 고농도의 피노실빈이 미치는 효과)

  • Song, Jina;Park, Jinsun;Jeong, Eunsil;So, A-Young;Pyee, Jaeho;Park, Heonyong
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.416-424
    • /
    • 2015
  • Pinosylvin is a stilbenoid found in the Pinus species. Pinosylvin at ~pM to ~nM concentrations induces cell proliferation, cell migration and anti-inflammatory activity in endothelial cells. However, it was recently reported that pinosylvin at high concentrations (50 to 100 μM) induces cell death in bovine aortic endothelial cells. In this study, we conducted a series of experiments to discover how pinosylvin at a high concentration (50 μM) induces endothelial cell death. Pinosylvin at the high concentration was shown to induce endothelial cell apoptosis through enhancing caspase-3 activity, flip-flop of phosphatidyl serine, and nuclear fragmentation. We found that pinosylvin at the high concentration additively increased caspase-3 activity enhanced by serum-starvation or treatment with 100 μM etoposide. We also determined that pinosylvin at the high concentration promoted activations of c-Jun N-terminal kinase (JNK) and endothelial nitric oxide synthetase (eNOS). We further ran a series of experiments to find out which signaling molecule plays a critical role in the pinosylvin-induced apoptosis. We finally found that SP-600125, a JNK inhibitor, had an inhibitory effect on the pinosylvin-induced endothelial cell death, but L-NAME, an eNOS inhibitor, had no effect. These data indicate that JNK is involved in the pinosylvin-induced apoptosis. Collectively, pinosylvin at high doses induces cell apoptosis via JNK activation.