• Title/Summary/Keyword: data delivery mechanism

Search Result 100, Processing Time 0.025 seconds

Research on Performance Improvement for Wireless CCN (무선 CCN을 위한 성능향상에 대한 연구)

  • Lee, Seung-Jin;Bae, Hong-Min;Kim, Byung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.71-76
    • /
    • 2015
  • To resolve inefficient content delivery mechanism in conventional internet-based networks, Content-Centric Networks (CCN) has been proposed for wired and wireless networks. One of issues in wireless CCN-based networks is overhead to achieve reliability on content delivery because CCN uses end-to-end two-way handshake with Interest/content packets. In this paper, a novel protocol to reduce overhead and achieve reliability is proposed. The protocol allows Interest packet to request multiple data packets and multiple data packets to be sent in a row without a Interest packets. The protocol is evaluated through the simulations and the performance improvement is proved.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

Analytical Framework for Promoting Customer Participation in Benefit Delay Type Services

  • Cho, Myung-Rae
    • The Journal of Economics, Marketing and Management
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Purpose - Benefit delay type services have a characteristic of benefit delay that does not immediately appear at the time of delivery of service. Due to a characteristic of benefit delay, the customer's participation in the service delivery system is hindered, and the quality of service declines. As a result, customer satisfaction would be reduced. The purpose of this study is to construct an analytical framework to analyze a mechanism that promotes customer participation in benefit delay type services. Research design, data, and Methodology - Existing research has considered only the performance of service companies to enhance the quality of service and customer satisfaction. This study focused on customer participation as a factor affecting the quality of service and customer satisfaction and attempted to construct an analytical framework based on a theoretical perspective of motivational research. Results - By adopting the motivation theory, this research derived three concepts, the possibility of gaining benefits, the emotional experience, and the desire of benefit. And motivation is created when the three factors interact with each other. Conclusions - This paper has constructed an analytical framework for analyzing factors that promote customer participation in the benefit delay service and finally has proposed case study for further research.

AFSO: An Adaptative Frame Size Optimization Mechanism for 802.11 Networks

  • Ge, Xiaohu;Wang, Cheng-Xiang;Yang, Yang;Shu, Lei;Liu, Chuang;Xiang, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.205-223
    • /
    • 2010
  • In this paper, we analyze the impact of different frame types on self-similarity and burstiness characteristics of the aggregated frame traffic from a real 802.11 wireless local area network. We find that characteristics of aggregated frame traffic are affected by both mean frame size and the proportion of specified frame types. Based on this new knowledge, an adaptative frame size optimization (AFSO) mechanism is proposed to improve the transmission efficiency by adaptively adjusting data frame size according to the proportions of different frame types. Simulation results show that our proposed mechanism can effectively regulate the burstiness of aggregated frame traffic and improve the successful delivery rate of data frames when a fixed throughput target is set for 802.11 wireless networks.

TIM: A Trapdoor Hash Function-based Authentication Mechanism for Streaming Applications

  • Seo, Seog Chung;Youn, Taek-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2922-2945
    • /
    • 2018
  • Achieving efficient authentication is a crucial issue for stream data commonly seen in content delivery, peer-to-peer, and multicast/broadcast networks. Stream authentication mechanisms need to be operated efficiently at both sender-side and receiver-side at the same time because of the properties of stream data such as real-time and delay-sensitivity. Until now, many stream authentication mechanisms have been proposed, but they are not efficient enough to be used in stream applications where the efficiency for sender and receiver sides are required simultaneously since most of them could achieve one of either sender-side and receiver-side efficiency. In this paper, we propose an efficient stream authentication mechanism, so called TIM, by integrating Trapdoor Hash Function and Merkle Hash Tree. Our construction can support efficient streaming data processing at both sender-side and receiver-side at the same time differently from previously proposed other schemes. Through theoretical and experimental analysis, we show that TIM can provide enhanced performance at both sender and receiver sides compared with existing mechanisms. Furthermore, TIM provides an important feature for streaming authentication, the resilience against transmission loss, since each data block can be verified with authentication information contained in itself.

Cluster-Based Routing Mechanism for Efficient Data Delivery to Group Mobile Users in Wireless Ad-Hoc Networks (그룹 이동성을 가지는 모바일 사용자들 간의 효율적인 데이터 공유를 위한 클러스터 기반 그룹 라우팅 기법 메커니즘)

  • Yoo, Jinhee;Han, Kyeongah;Jeong, Dahee;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1060-1073
    • /
    • 2013
  • In this paper, we present a cluster-based routing scheme for efficiently delivering data to group mobile users by extracting and clustering mobile user group simply from beacon message information in wireless ad-hoc networks. First, we propose an online-clustering mechanism that uses a local neighbor table on each node by recursively transmitting to neighbor nodes, and forms a group table where a set of listed nodes are classified as group members, without incurring much overhead. A node that appears the most frequently from neighbor tables throughout the network is selected as the cluster-head node, serving as a data gateway for the intra-cluster. Second, we design an inter-cluster routing that delivers data from stationary data sources to the selected cluster-head node, and a intra-cluster routing to deliver from the cluster-head node to users. Simulation results based on ns-2 in the ad-hoc networks consisting of 518 stationary nodes and 20 mobile nodes show that our proposed clustering mechanism achieves high clustering accuracy of 96 % on average. Regarding routing performance, our cluster-based routing scheme outperforms a naive one-to-one routing scheme without any clustering by reducing routing cost up to 1/20. Also, our intra-cluster routing utilizing a selected cluster-head node reduces routing cost in half as opposed to a counterpart of the intra-cluster routing through a randomly-selected internal group member.

Opportunistic Routing for Bandwidth-Sensitive Traffic in Wireless Networks with Lossy Links

  • Zhao, Peng;Yang, Xinyu
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.806-817
    • /
    • 2016
  • Opportunistic routing (OR) has been proposed as a viable approach to improve the performance of wireless multihop networks with lossy links. However, the exponential growth of the bandwidth-sensitive mobile traffic (e.g., mobile video streaming and online gaming) poses a great challenge to the performance of OR in term of bandwidth guarantee. To solve this problem, a novel mechanism is proposed to opportunistically forwarding data packets and provide bandwidth guarantee for the bandwidth-sensitive traffic. The proposal exploits the broadcast characteristic of wireless transmission and reduces the negative effect of wireless lossy links. First, the expected available bandwidth (EAB) and the expected transmission cost (ETC) under OR are estimated based on the local available bandwidth, link delivery probability, forwarding candidates, and prioritization policy. Then, the policies for determining and prioritizing the forwarding candidates is devised by considering the bandwidth and transmission cost. Finally, bandwidth-aware routing algorithm is proposed to opportunistically delivery data packets; meanwhile, admission control is applied to admit or reject traffic flows for bandwidth guarantee. Extensive simulation results show that our proposal consistently outperforms other existing opportunistic routing schemes in providing performance guarantee.

Interactions of Cationic Drugs and Cardiac Glycosides at the Hepatic Uptake Level: Studies in the Rat in Vivo, Isolated Perfused Rat Liver, Isolated Rat Hepatocytes and Oocytes Expressing oatp2

  • Dirk K.F.Meijer;Jessica E.van Montfoort
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.397-415
    • /
    • 2002
  • This paper deals with a crucial mechanism for interaction of basic drugs and cardiac glycosides at the hepatic uptake level. Available literature data is provided and new material is presented to picture the differential transport inhibition of bulky (type2) cationic drugs by a number of cardiac glycosides in rat liver. It is shown that the so called organic anion transporting peptide 2 (oatp2) is the likely interaction site: differential inhibition patterns as observed in oocytes expressing oatp2, could be clearly identified also in isolated rat hepatocytes, isolated perfused rat liver and the rat in vivo. The anticipation of transport interactions at the hepatic clearance level should be based on data on the relative affinities of interacting substrates for the transport systems involved along with knowledge on the pharmacokinetics of these agents as well as the chosen dose regimen in the studied species. This review highlights the importance of multispecific tranporter systems such as OATP, accommodating a broad spectrum of organic compounds of various charge, implying potential transport interactions that can affect body distribution and organ clearance.

Energy-Efficient Data-Aware Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 데이터 인지 라우팅 프로토콜)

  • Lee, Sung-Hyup;Kum, Dong-Won;Lee, Kang-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.122-130
    • /
    • 2008
  • In many applications of wireless sensor networks, sensed data can be classified either normal or urgent data according to its time criticalness. Normal data such as periodic monitoring is loss and delay tolerant, but urgent data such as fire alarm is time critical and should be transferred to a sink with reliable. In this paper, by exploiting these data characteristics, we propose a novel energy-efficient data-aware routing protocol for wireless sensor networks, which provides a high reliability for urgent data and energy efficiency for normal data. In the proposed scheme, in order to enhance network survivability and reliability for urgent data, each sensor node forwards only urgent data when its residual battery level is below than a threshold. Also, the proposed scheme uses different data delivery mechanisms depending on the data type. The normal data is delivered to the sink using a single-path-based data forwarding mechanism to improve the energy-efficiency. Meanwhile, the urgent data is transmitted to the sink using a directional flooding mechanism to guarantee high reliability. Simulation results demonstrate that the proposed scheme could significantly improve the network lifetime, along with high reliability for urgent data delivery.

A Mechanism to Support Scalability for Network Mobility (확장성 있는 네트워크 이동성 지원 방안)

  • Kim Taeeun;Lee Meejeong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.34-50
    • /
    • 2005
  • Recently, various proposals for supporting network mobility, which provides efficient Internet access when a network formed within a vehicle moves around as a unit, have emerged. The schemes in those proposals, though, manifest some major drawbacks with respect to scalability: If the number of mobile nodes within a mobile network is large, the handoff latency would increase greatly, causing communication disruption; Data delivery to a node within a nested mobile network nay suffer extremely inefficient pinball routing. We propose a scalable network mobility supporting mechanism named SNEMOS (Scalable NEtwork Mobility Support), which resolves the above two major problems of the existing schemes. The performance of SNEMOS is compared with the existing schemes through extensive simulations. The numerical results show that SNEMOS outperforms the existing schemes with respect to handoff latency hop counts of routing paths, packet delivery time, header overhead in data packets, and signaling overhead.