Data cube, which is multi-dimensional data model, have been successfully applied in many cases of multi-dimensional data analysis, and is still being researched to be applied in data stream analysis. Data stream is being generated in real-time, incessant, immense, and volatile manner. The distribution characteristics of data arc changing rapidly due to those characteristics, so the primary rule of handling data stream is to check once and dispose it. For those characteristics, users are more interested in high support attribute values observed rather than the entire attribute values over data streams. This paper propose dynamic data cube for applying data cube to data stream environment. Dynamic data cube specify user's interested area by the support ratio of attribute value, and dynamically manage the attribute values by grouping each other. By doing this it reduce the memory usage and process time. And it can efficiently shows or emphasize user's interested area by increasing the granularity for attributes that have higher support. We perform experiments to verify how efficiently dynamic data cube works in limited memory usage.
Data cube plays an important role in multi-dimensional, multi-level data analysis. Meeting on-line analysis requirements of data stream, several cube structures have been proposed for OLAP on data stream, such as stream cube, flowcube, S-cube. Since it is costly to construct data cube and execute ad-hoc OLAP queries, more research works should be done considering efficient data structure, query method and algorithms. Stream cube uses H-cubing to compute selected cuboids and store the computed cells in an H-tree, which form the cuboids along popular-path. However, the H-tree layoutis disorderly and H-cubing method relies too much on popular path.In this paper, first, we propose $H^*$-tree, an improved data structure, which makes the retrieval operation in tree structure more efficient. Second, we propose an improved cubing method, $H^*$-cubing, with respect to computing the cuboids that cannot be retrieved along popular-path when an ad-hoc OLAP query is executed. $H^*$-tree construction and $H^*$-cubing algorithms are given. Performance study turns out that during the construction step, $H^*$-tree outperforms H-tree with a more desirable trade-off between time and memory usage, and $H^*$-cubing is better adapted to ad-hoc OLAP querieswith respect to the factors such as time and memory space.
Generation methods of data cube have been studied for many years in data warehouse which supports decision making using stored data. There are two previous studies, one is multi-way array algorithm and the other is H-cubing algorithm which is based on the hyper-tree. The multi-way array algorithm stores all aggregation data in arrays, so if the base data is increased, the size of memory is also grow. The H-cubing algorithm which is based on the hyper-tree stores all tuples in one tree so the construction cost is increased. In this paper, we present an efficient data cube generation method based on hash table using weight mapping table and record hash table. Because the proposed method uses a hash table, the generation cost of data cube is decreased and the memory usage is also decreased. In the performance study, we shows that the proposed method provides faster search operation time and make data cube generation operate more efficiently.
MOLAP is a technology that accelerates multidimensional data analysis by storing data in a multidimensional array and accessing them using their position information. Depending on a mapping scheme of a multidimensional array onto disk, the sliced of MOLAP operations such as slice and dice varies significantly. [1] proposed a MOLAP cube storage scheme that divides a cube into small chunks with equal side length, compresses sparse chunks, and stores the chunks in row-major order of their chunk indexes. This type of cube storage scheme gives a fair chance to all dimensions of the input data. Here, we developed a variant of their cube storage scheme by placing chunks in a different order. Our scheme accelerates slice and dice operations by aligning chunks to physical disk block boundaries and clustering neighboring chunks. Z-indexing is used for chunk clustering. The efficiency of the proposed scheme is evaluated through experiments. We showed that the proposed scheme is efficient for 3~5 dimensional cubes that are frequently used to analyze business data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.4
no.2
/
pp.154-173
/
2010
Database outsourcing is unavoidable in the near future. In the scenario of data stream outsourcing, the data owner continuously publishes the latest data and associated authentication information through a service provider. Clients may register queries to the service provider and verify the result's correctness, utilizing the additional authentication information. Research on On-line Stream Analytics (OLSA) is motivated by extending the data cube technology for higher multi-level abstraction on the low-level-abstracted data streams. Existing work on OLSA fails to consider the issue of database outsourcing, while previous work on stream authentication does not support OLSA. To close this gap and solve the problem of OLSA query authentication while outsourcing data streams, we propose MDAHRB and MDAHB, two multi-dimensional authentication approaches. They are based on the general data model for OLSA, the stream cube. First, we improve the data structure of the H-tree, which is used to store the stream cube. Then, we design and implement two authentication schemes based on the improved H-trees, the HRB- and HB-trees, in accordance with the main stream query authentication framework for database outsourcing. Along with a cost models analysis, consistent with state-of-the-art cost metrics, an experimental evaluation is performed on a real data set. It exhibits that both MDAHRB and MDAHB are feasible for authenticating OLSA queries, while MDAHRB is more scalable.
Lee, Ki Yong;Park, Sojeong;Park, Eunju;Park, Jinkyung;Choi, Yeunjung
KIPS Transactions on Software and Data Engineering
/
v.3
no.11
/
pp.479-486
/
2014
MapReduce is a programing model used for parallelly processing a large amount of data. To analyze a large amount data, the data cube is widely used, which is an operator that computes group-bys for all possible combinations of given dimension attributes. When the number of dimension attributes is n, the data cube computes $2^n$ group-bys. In this paper, we propose an efficient method for computing data cubes using MapReduce. The proposed method partitions $2^n$ group-bys into $_nC_{{\lceil}n/2{\rceil}}$ batches, and computes those batches in stages using ${\lceil}n/2{\rceil}$ MapReduce jobs. Compared to the existing methods, the proposed method significantly reduces the amount of intermediate data generated by mappers, so that the cost of sorting and transferring those intermediate data is reduced significantly. Consequently, the total processing time for computing a data cube is reduced. Through experiments, we show the efficiency of the proposed method over the existing methods.
Journal of the Korea Fashion and Costume Design Association
/
v.22
no.4
/
pp.93-104
/
2020
This paper focuses on the spatial changes that create a three-dimensional or deep feeling on the surface of a scarf centering on the cube shape. Through this, consumers with various tastes were able to satisfy their image presentation. The cube form has simplicity and order and is likely to be used as a formative object. The cube shapes can be expressed in various forms through visual and perceptual spatial changes by presenting various shape changes based on the viewpoint of the two-dimensional silk surface, that is, by changing the eyes' position and orientation. Various visual theorists' discussions about cube-shaped visual changes were discussed. In addition, the three-dimensional spatial illusion caused by the shape and color of Victor Bazaarelli's cube was examined. The cube shape was printed silk surfaces to give a three-dimensional sense of space on a two-dimensional scarf design using the size change, the difference in the length of the line, and the color change. As such, the cube shape has infinite possibilities as a method that can express three-dimensional depth and space on the flat surface of a scarf. Therefore, it is hoped that this study will be applied to various aspects as the basic data for the scarf design that expresses the spatial changes in the form of cubes.
Proceedings of the Korean Society of Precision Engineering Conference
/
2002.10a
/
pp.650-653
/
2002
In this paper, a methodology to assess machine tool errors quickly is suggested using a touch probe and a cube array artifact. Parameterized error models derived are expressed of model coefficient vectors and backlash errors to be determined. To determine the unknown model coefficient vectors, a cube array artifact is proposed. Considering CMM measurement data of cube vertex coordinates. error vectors for all axes ate obtained and used to complete the error model. Some simulation results show that the suggested error model can follow the true values within 10$\mu\textrm{m}$. To verify the error model, a circular part with two concentric circles is measured and simulated. The results show that the differences between CMM and OMM radius errors are smaller than 15$\mu\textrm{m}$.
Kang, Hoon;Ha, Joonsoo;Shin, Jangbeom;Lee, Hong Gi;Wang, Yang
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.1
/
pp.97-104
/
2015
An 'associative cube', a class of auto-associative memories, is revisited here, in which training data and hidden orthogonal basis functions such as wavelet packets or Fourier kernels, are combined in the weight cube. This weight cube has hidden units in its depth, represented by a three dimensional cubic structure. We develop an unsupervised incremental learning mechanism based upon the adaptive least squares method. Training data are mapped into orthogonal basis vectors in a least-squares sense by updating the weights which minimize an energy function. Therefore, a prescribed orthogonal kernel is incrementally assigned to an incoming data. Next, we show how a decoding procedure finds the closest one with a competitive network in the hidden layer. As noisy test data are applied to an associative cube, the nearest one among the original training data are restored in an optimal sense. The simulation results confirm robustness of associative cubes even if test data are heavily distorted by various types of noise.
Stesina, Fabrizio;Corpino, Sabrina;Borras, Eduard Bosch;Amo, Jose Gonzalez Del;Pavarin, Daniele;Bellomo, Nicolas;Trezzolani, Fabio
Advances in aircraft and spacecraft science
/
v.9
no.3
/
pp.195-215
/
2022
The increasing interest in CubeSat platforms ant their capability of enlarging the frontier of possible missions impose technology improvements. Miniaturized electrical propulsion (EP) systems enable new mission for multi-unit CubeSats (6U+). While electric propulsion systems have achieved important level of knowledge at equipment level, the investigation of the mutual impact between EP system and CubeSat technology at system level can provide a decisive improvement for both the technologies. The interaction between CubeSat and EP system should be assessed in terms of electromagnetic emissions (both radiated and conducted), thermal gradients, high electrical power management, surface chemical deposition, and quick and reliable data exchanges. This paper shows how a versatile CubeSat Test Platform (CTP), together with standardized procedures and specialized facilities enable the acquisition fundamental and unprecedented information. Measurements can be taken both by specific ground support equipment placed inside the vacuum facility and by dedicated sensors and subsystems installed on the CTP, providing a completely new set of data never obtained before. CTP is constituted of a 6U primary structure hosting the EP system, representative CubeSat avionics and batteries. For the first test campaign, CTP hosts the ambipolar plasma propulsion system, called Regulus and developed by T4I. After the integration and the functional test in laboratory environment, CTP + Regulus performed a Test campaign in relevant environment in the vacuum chamber at CISAS, University of Padua. This paper is focused on the test campaign description and the main results achieved at different power levels for different duration of the firings.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.