• 제목/요약/키워드: data center network

검색결과 1,427건 처리시간 0.029초

사회네트워크 분석을 이용한 광주 전남지역의 공간 구조 변화 및 중심지 분석 (Analysis of Spatial Structures and Central Places of Gwangju and Jeonnam Region using Social Network Analysis)

  • 이지민
    • 농촌계획
    • /
    • 제23권2호
    • /
    • pp.43-54
    • /
    • 2017
  • When an age of low growth and population decline, population migration plays an important role in spatial structure of region. There have been many researches on migration and regional spatial structure. The purpose of this study is to examine the changes of Gwangju and Jeonnam region's spatial structure and central area using social network analysis methods. For analysis it was used that population and migration data and passenger OD(Origin and Destination) travel data released by Statistics Korea and Korea Transport Database(KTDB). Using Gephi 0.8.2, migration and passenger OD networks were visualized, and this describe network flow and density. The results of the network centrality analysis show that the most populated village is not always network center though population mass is an important factor of central places. The average eigenvector centrality of 2010 migration is the lowest during 2005-2015, and it means few regions have high centralities. When comparing migration and travel networks, travel data is more effective than migration data in determining the central location considering spatial functions.

IoT Connectivity Application for Smart Building based on Analysis and Prediction System

  • COROTINSCHI, Ghenadie;FRANCU, Catalin;ZAGAN, Ionel;GAITAN, Vasile Gheorghita
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.103-108
    • /
    • 2021
  • The emergence of new technologies and their implementation by different manufacturers of electronic devices are experiencing an ascending trend. Most of the time, these protocols are expected to reach a certain degree of maturity, and electronic equipment manufacturers use simplified communication standards and interfaces that have already reached maturity in terms of their development such as ModBUS, KNX or CAN. This paper proposes an IoT solution of the Smart Home type based on an Analysis and Prediction System. A data acquisition component was implemented and there was defined an algorithm for the analysis and prediction of actions based on the values collected from the data update component and the data logger records.

유사물체 치환증강을 통한 기동장비 물체 인식 성능 향상 (Object Detection Accuracy Improvements of Mobility Equipments through Substitution Augmentation of Similar Objects)

  • 허지성;박지훈
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.300-310
    • /
    • 2022
  • A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.

Information Technology Infrastructure for Agriculture Genotyping Studies

  • Pardamean, Bens;Baurley, James W.;Perbangsa, Anzaludin S.;Utami, Dwinita;Rijzaani, Habib;Satyawan, Dani
    • Journal of Information Processing Systems
    • /
    • 제14권3호
    • /
    • pp.655-665
    • /
    • 2018
  • In efforts to increase its agricultural productivity, the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development has conducted a variety of genomic studies using high-throughput DNA genotyping and sequencing. The large quantity of data (big data) produced by these biotechnologies require high performance data management system to store, backup, and secure data. Additionally, these genetic studies are computationally demanding, requiring high performance processors and memory for data processing and analysis. Reliable network connectivity with large bandwidth to transfer data is essential as well as database applications and statistical tools that include cleaning, quality control, querying based on specific criteria, and exporting to various formats that are important for generating high yield varieties of crops and improving future agricultural strategies. This manuscript presents a reliable, secure, and scalable information technology infrastructure tailored to Indonesian agriculture genotyping studies.

데이터 마이닝을 이용한 입원 암 환자 간호 중증도 예측모델 구축 (An Analysis of Nursing Needs for Hospitalized Cancer Patients;Using Data Mining Techniques)

  • 박선아
    • 종양간호연구
    • /
    • 제5권1호
    • /
    • pp.3-10
    • /
    • 2005
  • Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.

  • PDF

COVID-19: Improving the accuracy using data augmentation and pre-trained DCNN Models

  • Saif Hassan;Abdul Ghafoor;Zahid Hussain Khand;Zafar Ali;Ghulam Mujtaba;Sajid Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.170-176
    • /
    • 2024
  • Since the World Health Organization (WHO) has declared COVID-19 as pandemic, many researchers have started working on developing vaccine and developing AI systems to detect COVID-19 patient using Chest X-ray images. The purpose of this work is to improve the performance of pre-trained Deep convolution neural nets (DCNNs) on Chest X-ray images dataset specially COVID-19 which is developed by collecting from different sources such as GitHub, Kaggle. To improve the performance of Deep CNNs, data augmentation is used in this study. The COVID-19 dataset collected from GitHub was containing 257 images while the other two classes normal and pneumonia were having more than 500 images each class. There were two issues whike training DCNN model on this dataset, one is unbalanced and second is the data is very less. In order to handle these both issues, we performed data augmentation such as rotation, flipping to increase and balance the dataset. After data augmentation each class contains 510 images. Results show that augmentation on Chest X-ray images helps in improving accuracy. The accuracy before and after augmentation produced by our proposed architecture is 96.8% and 98.4% respectively.

Study on Agenda-Setting Structure between SNS and News: Focusing on Application of Network Agenda-Setting

  • Kweon, Sang-Hee;Go, Taeseong;Kang, Bo-young;Cha, Min-Kyung;Kim, Se-Jin;Kweon, Hea-Ji
    • International Journal of Contents
    • /
    • 제15권1호
    • /
    • pp.10-24
    • /
    • 2019
  • This study applied network agenda-setting theory to analyze the impact of the agenda-setting function of the media on certain issues by focusing on the agenda at the center of controversy, 'Creative Economy'. To this end, the study extracted the data referred to creative economy in the media and SNS from 1 January 2008 to 31 December 2014, and analyzed the data using the network analysis program UCINET and the Korean language analysis program Textom. The results of the present study show that, during the period under former President Lee (2008-2011), the media's creative economy agenda-setting function did not exert a significant impact on the agenda-setting within SNS. However, from 2012 when the government of former President Park Geun-hye had started, the agenda-setting function of the media starts to show increasingly strong influence on the agenda cognition in SNS. The central words and sub-words configuration forming the center of the semantic network moved in the direction of a high correlation, in addition to the gradually increasing correlation based on QAP correlation analysis. In 2014, the semantic networks of the media and SNS bore a close resemblance to each other, while the shape of networks and sub-words structure also had a high level of similarity.

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

빅데이터 분석을 통한 발명 교육 센터에 대한 사회적 인식 (Social Perception of the Invention Education Center as seen in Big Data)

  • 이은상
    • 한국융합학회논문지
    • /
    • 제13권1호
    • /
    • pp.71-80
    • /
    • 2022
  • 이 연구의 목적은 빅데이터 분석 방법을 이용하여 발명 교육 센터에 대한 사회적 인식을 확인해 보는 데 있다. 이를 위해 TEXTOM 사이트를 이용하여 네이버와 다음 사이트의 블로그, 카페, 뉴스 채널에서 '발명+교육+센터'를 검색 키워드로 2014년 1월부터 2021년 9월까지의 데이터를 수집하였다. 수집된 데이터는 TEXTOM 사이트에서 정제하였으며, 텍스트 마이닝 분석과 의미 연결망 분석을 위해 TEXTOM 사이트, Ucinet 6, Netdraw 프로그램을 이용하였다. 수집된 데이터는 1차와 2차의 정제 과정을 거쳐 단어빈도를 바탕으로 주요 키워드 60개를 선정하였으며, 선정된 주요 키워드는 매트릭스 데이터로 변환하여 의미 연결망 분석을 실시하였다. 이 연구의 텍스트 마이닝 분석 결과 '학생', '운영', '한국발명진흥회', '특허청' 등이 의미 있는 키워드임을 확인하였다. 의미 연결망 분석 결과 발명 교육 센터와 관련된 '교육 운영', '발명 대회', '교육 과정 및 진행', '사업 모집 및 지원', '주관 및 선정 기관' 등 5개의 군집을 확인할 수 있었다. 이 연구의 결과는 발명 교육 센터에 대한 연구를 수행하는 연구자나 정책 입안자의 학술 연구에 활용될 수 있을 것이다.

Energy-aware Virtual Resource Mapping Algorithm in Wireless Data Center

  • Luo, Juan;Fu, Shan;Wu, Di
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.819-837
    • /
    • 2014
  • Data centers, which implement cloud service, have been faced up with quick growth of energy consumption and low efficiency of energy. 60GHz wireless communication technology, as a new option to data centers, can provide feasible approach to alleviate the problems. Aiming at energy optimization in 60GHz wireless data centers (WDCs), we investigate virtualization technology to assign virtual resources to minimum number of servers, and turn off other servers or adjust them to the state of low power. By comprehensive analysis of wireless data centers, we model virtual network and physical network in WDCs firstly, and propose Virtual Resource Mapping Packing Algorithm (VRMPA) to solve energy management problems. According to VRMPA, we adopt packing algorithm and sort physical resource only once, which improves efficiency of virtual resource allocation. Simulation results show that, under the condition of guaranteeing network load, VPMPA algorithm can achieve better virtual request acceptance rate and higher utilization rate of energy consumption.