• 제목/요약/키워드: data acquisition device

Search Result 266, Processing Time 0.034 seconds

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

A Study on the Reliability Improvement of Compartment Leak Test in Surface Vessels (함정 격실기밀 평가 방안에 대한 신뢰성 향상 연구)

  • Choi, Sang-Min;Park, Dong-Kyu;Beak, Yong-Kawn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.546-551
    • /
    • 2020
  • Generally, surface vessels have many compartments for operation and living quarters, and each compartment is an important space for the ship's survivability. During ship construction, a compartment leak test is necessary and is carried out on each vessel. However, the current test method is in doubt when looking at the actual test results. The reason is that only one pressure gauge is used for the measurement to check the air, so an uncomprehended phenomenon is detected during group compartment leak tests. From this point of view, an improved test device and method are needed. In this study, a multi-channel data acquisition device with multiple pressure sensors is proposed to detect each compartment's pressure variation or pressure drop. This test is a more confidential compartment leak test than the current method, and the test device can show real-time pressure detection values of each of the pressure sensors, which are installed in each compartment, including unmanned space.

Effects of Acupuncture Stimulation on the Radial artery's Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

  • Shin, Jae-Young;Ku, Boncho;Kim, Tae-Hun;Bae, Jang Han;Jun, Min-Ho;Lee, Jun-Hwan;Kim, Jaeuk U.
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.197-206
    • /
    • 2016
  • Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery's pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz ($SE_{10-30Hz}$) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University's Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer-reviewed journals and presented at national and international conferences. Trial registration number: This trial was registered with the Clinical Research Information Service (CRIS) at the Korea National Institute of Health (NIH), Republic of Korea (KCT0001663), which is a registry in the World Health Organization's (WHO's) Registry Network.

A Study of the Effect of Acoustic Noise Attenuator on Auditory Functional MRI (소음 감쇠기를 이용한 청각의 뇌기능 자기공명영상)

  • Kim, S.H.;Kim, I.S.;Lee, J.J.;Park, J.A.;Lee, Y.J.;Yeo, J.R.;Bae, S.J.;Lee, S.H.;Chang, Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.2
    • /
    • pp.134-139
    • /
    • 2005
  • Purpose : To evaluate the usefulness of acoustic noise attenuator on auditory fMRI examination. Materials and methods : The acoustic noise attenuator consists of mask, earmuff and silicon earplug. The soft polyurethane sheet and polyurethane form , which has a good soundproof characteristic were used for mask and earmuff. Auditory fMRI experiments of 500 Hz pure tone stimulation were performed in three different cases; first all of mask, earmuff and earplug, secondly earmuff and earplug only and finally without attenuator in 4 normal hearing volunteers. For data acquisition, BOLD MR imaging technique was employed at a 1.5T MR scanner equipped with high performance gradient system. The raw data were analyzed using a SPM-99 analysis software and the activation maps were obtained. Results : In case of all items of acoustic attenuator used, the results revealed that activation was focused on primary auditory area. When only earmuff and earplug were used, the results showed that the activation spread over primary auditory and secondary associative areas. Last, when no device used, only weak activation was observed on the right auditory cortex. Conclusion : It is expected that the acoustic noise attenuator, which consists of earplugs, earmuffs and mask, is a very useful device in auditory fMRI study.

  • PDF

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

A Study on the remote acuisition of HejHome Air Cloud artifacts (스마트 홈 헤이 홈 Air의 클라우드 아티팩트 원격 수집 방안 연구)

  • Kim, Ju-eun;Seo, Seung-hee;Cha, Hae-seong;Kim, Yeok;Lee, Chang-hoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.69-78
    • /
    • 2022
  • As the use of Internet of Things (IoT) devices has expanded, digital forensics coverage of the National Police Agency has expanded to smart home areas. Accordingly, most of the existing studies conducted to acquire smart home platform data were mainly conducted to analyze local data of mobile devices and analyze network perspectives. However, meaningful data for evidence analysis is mainly stored on cloud storage on smart home platforms. Therefore, in this paper, we study how to acquire stored in the cloud in a Hey Home Air environment by extracting accessToken of user accounts through a cookie database of browsers such as Microsoft Edge, Google Chrome, Mozilia Firefox, and Opera, which are recorded on a PC when users use the Hey Home app-based "Hey Home Square" service. In this paper, the it was configured with smart temperature and humidity sensors, smart door sensors, and smart motion sensors, and artifacts such as temperature and humidity data by date and place, device list used, and motion detection records were collected. Information such as temperature and humidity at the time of the incident can be seen from the results of the artifact analysis and can be used in the forensic investigation process. In addition, the cloud data acquisition method using OpenAPI proposed in this paper excludes the possibility of modulation during the data collection process and uses the API method, so it follows the principle of integrity and reproducibility, which are the principles of digital forensics.

Determination of Ammonia Nitrogen by Color Saturation Measurement System (채도측정시스템을 이용한 암모니아성 질소의 정량방법)

  • Lee, Hyeong-Choon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.136-141
    • /
    • 2012
  • Objectives: The objective of this study was to investigate whether the ammonia nitrogen concentration of aqueous samples such as drinking water can be determined by measuring the saturation of the samples colored by indophenol method. Methods: A color saturation measurement system was constructed by connecting a notebook computer to an image acquisition device composed of a PC camera and a light source, and was then used to measure the saturation of samples colored by blue indophenol complex. Results: Between two available light sources, a fluorescent lamp was selected due to its demonstrating better linearity between color saturation and ammonia nitrogen concentration. Prediction by quadratic regression was more accurate than by linear regression, and prediction by quadratic regression in the concentration range of 0.1-1.0 $mg/l$ was more accurate than in the concentration range of 0.0-1.0 $mg/l$. Regression-based predictions over 0.25 $mg/l$, 0.55 $mg/l$ and 0.75 $mg/l$ concentrations were implemented both by spectrophotometric method and by measuring color saturation. In the case of 0.25 $mg/l$, the predicted concentration by spectrophotometric method was $0.256{\pm}0.0076\;mg/l$ and the predicted concentration by measuring color saturation was $0.246{\pm}0.0086\;mg/l$ (p=0.051). In the case of 0.55 $mg/l$, they were $0.561{\pm}0.0068\;mg/l$ and $0.564{\pm}0.0166\;mg/l$ (p=0.660). In the case of 0.75 $mg/l$, they were $0.755{\pm}0.0139\;mg/l$ and $0.762{\pm}0.0088\;mg/l$ (p=0.215). Conclusions: There were no statistically significant differences (p>0.05) between the data from the two methods in all three of the concentrations. Therefore, the color saturation measurement method proposed in this paper may be considered applicable for determining the ammonia nitrogen concentration of aqueous samples such as drinking water.

Serviceability Evaluation of ZigBee Technology for Construction Applications (설문조사를 통한 ZigBee 무선통신기술의 건설산업 사용성평가에 관한 연구)

  • Shin, Young Shik;Cao, Shang;Jang, Won-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3D
    • /
    • pp.247-258
    • /
    • 2012
  • This research evaluates the serviceability of ZigBee device that provides a potential technology to realizing the ubiquitous computing by improving the productivity and effectiveness in construction and data acquisition. Literature review was conducted in various application areas such as bridge monitoring, slope management, road management, highway traffic control. In addition characteristics and challenges in various wireless technologies are described to identify their adoptability to construction environment. Among them, ZigBee technology was selected to introduce the functionality on hardware, network, and security. Then, questionnaire survey was implemented by four different group, construction engineers, students, hardware developers, and researchers to explore the success and failure factors of ZigBee technology in construction area. The results proposes a guideline of the applicability of ZigBee technology in the area of serviceability, application area, considerations, and future direction. This paper would provide valuable information for future researches and technology development in designing the wireless sensor network applications.

Clinical Application of 3-D Compensator in Head and Neck Cancer (두경부암 환자 치료시 3차원 보상체의 임상 적용에 대한 고찰)

  • Hong, Dong-Ki;Lee, Jeong-Woo;Lee, Koo-Hyun;Park, Kwang-Ho;Kim, Jeong-Man
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.64-70
    • /
    • 1997
  • The goal of radiation treatment planning is to deliver the dose to the patient within $5\%$ of that prescribed. We have often encountered the situation that the area which have not only several irregular contours but also tissue heterogeneities should be treated. With conventional devices such as wedges, missing tissue compensator. there are some limitations to achieve the uniform dose distribution in treatment volume. The use of CT simulator, 3-D planning system, computer-controlled milling machine enables it to deliver the dose uniformally. This report includes the whole procedure which have patient data acquisition 3D planning, computer-controlled milling, performance verification of 3D compensator, and TLD evaluation. We applied it for the treatment of head and heck cancer only. In Spite of the irregular contour and different electron density of tessue, we have achieved the uniformity of the dose distribution within ${\pm}3\%$ relatively. Although there are some problems which are not only verification of performance but uncertainties of using the new treatment device, we believe that the improvement of dosimetry will eliminate the uncertainties of that application. so the other lesions besides head and neck can will be ale to use the 3D compensator to achieve the dose uniformity

  • PDF