• 제목/요약/키워드: dark silicon

검색결과 78건 처리시간 0.027초

Influence of the Recombination Parameters at the Si/SiO2 Interface on the Ideality of the Dark Current of High Efficiency Silicon Solar Cells

  • Kamal, Husain;Ghannam, Moustafa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.232-242
    • /
    • 2015
  • Analytical study of surface recombination at the $Si/SiO_2$ interface is carried out in order to set the optimum surface conditions that result in minimum dark base current and maximum open circuit voltage in silicon solar cells. Recombination centers are assumed to form a continuum rather than to be at a single energy level in the energy gap. It is shown that the presence of a hump in the dark I-V characteristics of high efficiency PERL cells is due to the dark current transition from a high surface recombination regime at low voltage to a low surface recombination regime at high voltage. Successful fitting of reported dark I-V characteristics of a typical PERL cell is obtained with several possible combinations of surface parameters including equal electron and hole capture cross sections.

Transient Photocurrent in Amorphous Silicon Radiation Detectors

  • Lee, Hyoung-Koo;Suh, Tae-Suk;Choe, Bo-Young;Shinn, Kyung-Sub;Cho, Gyu-Seong
    • Nuclear Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.468-475
    • /
    • 1997
  • The transient photocurrent in amorphous silicon radiation detectors (n-i-n and forward biased p-i-n) were analyzed. The transient photocurrents in these devices could be modeled using multiple trap levels in the forbidden gap. Using this model the rise and decay shapes of the photocurrents could be fitted. The decaying photocurrent shapes of the p-i-n and n-i-n devices after a short duration of light pulse showed a similar behavior at low dark current density levels, but at higher dark current density levels the photocurrent of the p-i-n diode decayed faster than that of the n-i-n, which could be explained by the decreased electron lifetimes in the forward biased p-i-n diode at high dark current densities. The transient photoconductive gain behaviors in the amorphous silicon radiation detectors are discussed in terms of device configuration, dark current density and time scale.

  • PDF

수직 방향 전류를 이용한 폴리실리콘 포토다이오드에 관한 연구 (Investigation of Polycrystalline Silicon Photodiodes Utilizing Vertically Directed Current Path)

  • 송영선;윤일구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.75-76
    • /
    • 2006
  • In this paper, the polycrystalline silicon photodiodes utilizing vertically directed current path are investigated. The location of electrodes is considered with the grain direction and the current path. The relationships between grain boundaries and characteristics of photodiode are simulated to apply the vertically grown polycrystalline silicon to photodiodes. From the results, the vertically grown polycrystalline silicon photodiode is a potential candidate for CMOS image sensor. However, the increment of dark current related to grain boundaries should be reduced.

  • PDF

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

SOI Image Sensor Removed Sources of Dark Current with Pinned Photodiode on Handle Wafer (ICEIC'04)

  • Cho Y. S.;Lee C. W.;Choi S. Y.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.482-485
    • /
    • 2004
  • We fabricated a hybrid bulk/fully depleted silicon on insulator (FDSOI) complementary metal oxide semiconductor (CMOS) active pixel image sensor. The active pixel is comprised of reset and source follower transistors on the SOI seed wafer, while the pinned photodiode and readout gate and floating diffusion are fabricated on the SOI handle wafer after the removal of the buried oxide. The source of dark current is eliminated by hybrid bulk/FDSOI pixel structure between localized oxidation of silicon (LOCOS) and photodiode(PD). By using the low noise hybrid pixel structure, dark currents qm be suppressed significantly. The pinned photodiode can also be optimized for quantum efficiency and reduce the noise of dark current. The spectral response of the pinned photodiode on the SOI handle wafer is very flat between 400 nm and 700 nm and the dark current that is higher than desired is about 10 nA/cm2 at a $V_{DD}$ of 2 V.

  • PDF

A New Method for the Determination of Carrier Lifetime in Silicon Wafers from Conductivity Modulation Measurements

  • Elani, Ussama A.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권4호
    • /
    • pp.311-317
    • /
    • 2008
  • The measurement of dark ${\sigma}_D$, gamma-induced ${\sigma}_{\gamma}$ conductivities and the expected conductivity modulation ${\Delta}_{\sigma}$ in silicon wafers/samples is studied for developing a new technique for carrier lifetime evaluation. In this paper a simple method is introduced to find the carrier lifetime variations with the measured conductivity and conductivity modulation under dark and gamma irradiation conditions. It will be concluded that this simple method enables us to give an improved wafer evaluation, processing and quality control in the field of photovoltaic materials and other electronic devices.

Characteristics of fluoride/glass as a seed layer for microcrystalline silicon film growth

  • Choi, Seok-Won;Kim, Do-Young;Ahn, Byeong-Jae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.65-66
    • /
    • 2000
  • Various fluoride films on a glass substrate were prepared and characterized to provide a seed layer for crystalline Si film growth. The XRD analysis on $CaF_2/glass$ illustrated (220) preferential orientation and showed lattice mismatch less than 5 % with Si. We achieved a fluoride film with breakdown electric field of 1.27 MV/cm, leakage current density about $10^{-6}$ $A/cm^2$, and relative dielectric constant less than 5.6. This paper demonstrates microcrystalline silicon $({\mu}c-Si)$ film growth by using a $CaF_2/glass$ substrate. The ${\mu}c-Si$ films exhibited crystallization in (111) and (220) planes, grain size of $700\;{\AA}$, crystalline volume fraction over 65 %, dark- and photo-conductivity ratio of 124, activation energy of 0.49 eV, and dark conductivity less than $4{\times}10^{-7}$ S/cm.

  • PDF

Neutral Beam assisted Chemical Vapor Deposition at Low Temperature for n-type Doped nano-crystalline silicon Thin Film

  • 장진녕;이동혁;소현욱;유석재;이봉주;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.52-52
    • /
    • 2011
  • A novel deposition process for n-type nanocrystalline silicon (n-type nc-Si) thin films at room temperature has been developed by adopting the neutral beam assisted chemical vapor deposition (NBa-CVD). During formation of n-type nc-Si thin film by the NBa-CVD process with silicon reflector electrode at room temperature, the energetic particles could induce enhance doping efficiency and crystalline phase in polymorphous-Si thin films without additional heating on substrate; The dark conductivity and substrate temperature of P-doped polymorphous~nano crystalline silicon thin films increased with increasing the reflector bias. The NB energy heating substrate(but lower than $80^{\circ}C$ and increase doping efficiency. This low temperature processed doped nano-crystalline can address key problem in applications from flexible display backplane thin film transistor to flexible solar cell.

  • PDF

방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석 (A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation)

  • 김기윤;김명수;임경택;이은중;김찬규;박종환;조규성
    • 방사선산업학회지
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

MeV Si 자기 이온주입된 단결정 Silicon내의 결함 거동 (Defect Formatìon and Annealìng Behavìor in MeV Si Self-Implanted Silicon)

  • 조남훈;장기완;서경수;이정용;노재상
    • 한국재료학회지
    • /
    • 제6권7호
    • /
    • pp.733-741
    • /
    • 1996
  • 본 연구에서는 MeV Si 자기 이온주업을 실시하여 주업원자와 모재 원자와의 화학적 영향이 배제된 결함 형성 거동을 관찰하였다. 자기 이온주업을 위하여 Tandem Accelerator가 사용되었고 1~3 MeV의 에너지 범위의 이온주입이 실시되었다. MeV 이온주입된 시편의 격자결함은 표면으로부터 고립된 $R_p$ 근처에 집중된 것이 관찰되었다. 주입에너지 변화에 따른 격자결함 생성 거동을 관찰하기 위하여 조사량을 $1{\times}10^{15}/cm^2$으로 고정하고 주입에너지를 1~3 MeV로 증가하였다. RBS 분석 결과 격자결함의 형성층 깊이는 에너지 증가에 따라 증가하였고 표면층에는 에너지 증가시 더욱 좋은 결정성을 유지하였다. 또한 주입에너지가 일정한 경우 조사량 증가시 $R_p$ 부근에 집중된 결함층의 농도는 증가하였으나 표면부근의 결함농도는 임계조사량 이상에서 포화되는 것이 관찰되었다. XTEM 분석 결과는 RBS의 결과와 잘 일치하였다. XTEM 관찰 결과 이온주업 상태의 결함층은 dark band의 형태로 관찰되었고 열처리시 이차결함은 이곳으로부터 생성되었다. 2MeV $Si^+$ 자기 이온주입시 이차결함이 형성되는 임계조사량은 $3{\times}10^{14}{\sim}5{\times}10^{14}/cm^2$ 사이로 관찰되었다. 열처리시 dark band의 하단부의 위치는 변화하지 않고 상단부만이 제거되었다. 실험을 통하여 얻은 결과들은 Monte-Carlo technique을 이용한 TRIM-code를 사용하여 해석하였다. SIMS 분석을 통하여 이차결함은 모재내에 존재하는 oxygen 불순물을 gettering함을 관찰하였다.

  • PDF