• Title/Summary/Keyword: dark respiration

Search Result 69, Processing Time 0.028 seconds

Studies on $CO_2$-Fixation Ability and Photorespiration in Ginseng Leaves (인삼 잎의 $CO_2$ 고정능과 광호흡에 관한 연구)

  • 이인철
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.105-111
    • /
    • 1982
  • These studies were undertaken to elucidate the reasons for the low productivity of ginseng by comparing the rate of $CO_2$-fixation and photorespiration, variation in the amounts of intermediates and enzyme activities of glycolate oxidase and catalase in ginseng with those of potato. The ability of $CO_2$-fixation in ginseng was found to be one half of that of potato and there were significant differences between those two plants in the rate of $^{14}C$ incorporated into glutamate, aspartate, malate and 3-PGA, but little differences in P-glycolate, glycolate, serine and glycine. The ratio of photorespiration to dark respiration and the activities of glycolate oxidase and catalase in the two species were about same, but ginseng showed higher ratio in photorespiration to total $CO_2$-fixation than potato did. These results indicated that the low productivity of ginseng may resulted from the low $CO_2$-fixation ability and high rate of photorespiration.

  • PDF

Studies on Photosynthetic and Respiratory Characteristics in Warm Season and Cool Season Turfgrasses (한지형(寒地型) 잔디와 난지형(暖地型) 잔디의 광합성(光合成) 및 호흡특성(呼吸特性))

  • Nan, Xuan Song;Kaneko, Seiji;Ishii, Ryuichi
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.166-174
    • /
    • 1995
  • This experiment was conducted to investigate a cause of summer depression of cool season turfgrass, using nine cultivars in warm season and twenty-eight cool season turfgrasses. Even though an average of apparent photosynthesis(APS) per fresh weight was 13.09 mg $CO_2$/g/h in warm season turfgrass and 7.75 mg $CO_2$/g/h in cool season turfgrass, the Creeping bentgrass in cool season type was higher than Kikuyugrass and Bahiagrass in warm season type. The optimum temperature for the heighest APS was $30^{\circ}C$ in warm season type and $25^{\circ}C$ in cool season type. In $CO_2$ compensation point(CCP) as an index of dark respiration, it was higher in cool season turfgrass(75.6ppm) than warm season turfgrass(29.5ppm). In warm season type, even though the temperature increased from $25^{\circ}C$ to $40^{\circ}C$ the CCP was not increased. But the higher temperature rises the more increased CCP in cool season type. Dark respiration(DR) was higher in cool season type than warm season type under various temperature conditions, but the increasing ratio of DR with the temperature increment was not so much differed between two types.

  • PDF

Influence of Monochromatic Light on Photosynthesis and Leaf Bleaching in Panax species (단색광이 인삼속 식물의 광합성과 잎표백화에 미치는 영향)

  • Lee Sung-Sik;Proctor John T.A.;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.1-7
    • /
    • 1999
  • Photosynthetic rates and leaf bleaching were measured under light of far-red, red, orange, green, blue and white in order to clarify the effect of light qualities on photosynthesis in Panax species, P. ginseng and P. quinquefolium. Photosynthetic rate of P. ginseng and P. quinquifolium showed higher in the order under the light of red > orange > blue > white > green. Degree of leaf bleaching in P. quinquifolium showed severer in the order under the light of far-red > red > white > blue > orange > green. These suggest that shading material with blue or orange color is good for ginseng growth. As for the effect of temperature, the photosynthesis was increased with increasing temperature untill $25^{\circ}C$ and thereafter decreased. Therefore, it was clarified that the optimum temperature for photosynthesis of P. ginseng and P. quinquefolium was $25^{\circ}C$. And the dark respiration rate of ginseng leaf also increased with increasing air temperature. Especially, the dark respiration rate increased by $80\%$ for P. ginseng and by $73\%$ for P.quinquefolium at above $30^{\circ}C$ as compared with $25^{\circ}C$. In general, the photosynthesis rate was higher in P. quinquifolium than in P. ginseng and ranged from 3.54 to 4.04 mg $(CO_2{\cdot}dm^{-2}{\cdot}hr^{-1})$ for P. quinquefolium and from 2.08 to 2.59 mg$(CO_2{\cdot}dm^{-2}{\cdot}hr^{-1})$ for P. ginseng.

  • PDF

Studies on the Productivity of Korean White Pine Forest (I) Effects of Temperature, Light and Water Stress on Photosynthesis and Dark Respiration Rates of Leaves (잣나무림(林)의 물질생산력(物質生産力)에 관(関)한 연구(硏究) (I) 엽(葉)의 광합성속도(光合成速度)와 호흡속도(呼吸速度)에 미치는 광(光)․온도(溫度)․수분(水分)의 영향(影響))

  • Han, Sang Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.55 no.1
    • /
    • pp.55-58
    • /
    • 1982
  • This study is to investigate the effects of temperature, light and water deficit on apparent phytosynthesis rate (Pn) and dark respiration rate(Rd) of leaves in the series of studies dealing with primary productivity of korean white pine forest. The results obtained are as follows: 1. The light saturation for Pn occured at about 40 Klux, and light compensation at 1.0 to 1.3 Klux. 2. The Pn of current leaves was highest, and Pn was decreased with increasing leaf age. 3. The Rd on the response of temperature in February was about two times value in all of the temperature ranges as compared with the ones in August. 4. The incipient water stress, above which Pn and Rd declined from 100%, was different for Pn(-10bar). The high water stress required to reduce Pn to nearly 0%, at -24 bar, but Rd was only 43% at -24 bar. 5. The optimum temperature range for Pn showed about 15 to $18^{\circ}C$ in February and 23 to $26^{\circ}C$ in August.

  • PDF

Leaf Photosynthesis as Influenced by Mesophyll Cell Volume and Surface Area in Chamber-Grown Soybean (Glycine max) Leaves (중엽세포의 체적 및 표면적과 콩잎의 광합성 능력간 관계)

  • Jin Il, Yun;S. Elwynn, Taylor
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 1988
  • Variations in photosynthetic capacities of leaves differing in thickness were explained on the basis of relationships between gas exchange and internal leaf structure. The relative importance of gas diffusion and of biochemical processes as limiting for leaf photosynthesis was also determined. Mesophyll cell surface was considered to be the limiting internal site for gas diffusion. and cell volume to be indicative of the sink capacity for CO$_2$ fixation. Increases in cell surface area were assumed to reduce proportionately mesophyll resistance to the liquid phase diffusion of CO$_2$. Increased cell volume was thought to account for a proportional increase in reaction rates for carboxylation, oxygenation. and dark respiration. This assumption was tested using chamber-grown Glycine max (L.) Merr. cv. Amsoy plants. Plants were grown under 200, 400, and 600 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR to induce development of various leaf thickness. Photosynthetic CO$_2$ uptake rates were measured on the 3rd and 4th trifoliolate leaves under 1000 ${\mu}$mol photons m$\^$-2/ s$\^$-1/ of PAR and at the air temperature of 28 C. A pseudo -mechanistic photosynthesis model was modified to accommodate the concept of cell surface area as well as both cell volume and surface area. Both versions were used to simulate leaf photosynthesis. Computations based on volume and surface area showed slightly better agreement with experimental data than did those based on the surface area only. This implies that any single factor, whether it is photosynthetic model utilized in this study was suitable for relating leaf thickness to leaf productivity.

  • PDF

Physiological Differences of Ilex rotunda and Illicium anisatum under Low Light Intensities (다른 광도에서 생육한 먼나무, 붓순나무의 생리적 차이)

  • Son Seog-Gu;Je Sun-Mi;Woo Su-Young;Byun Kwang-Ok;Kang Young-Je;Kwang Byung-Seo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • We examined seedlings of two species (Ilex rotunda and Illicium anisatum) which have a different level of shade tolerance and raised them under different light regimes (full sunlight and 50% shading). After 12 months, we investigated chlorophyll content (Chl. a, Chl. b and Chl. a+b), photosynthetic systems (photosynthetic rate, light compensation point, dark respiration rate and quantum yield), intercellular $CO_2$ concentration and water use efficiency to show acclimation reaction to different light conditions. Seedlings grown under full sunlight showed lower chlorophyll content than those in the shading regime. There was a significant difference between the full sunlight and shade treatments in I. anisatum (shade tolerance species). I. rotunda (intermediate species) showed high photosynthetic rate and water use efficiency over PPFD $1000\;{\mu}mol\;m^{-2}s^{-1}$ to full sunlight. Also, I. anisatum grown under full sunlight showed lower photosynthetic rate and water use efficiency over a range of all PPFD. This result showed that I. rotunda has a more flexible reaction system than that of I. anisatum.

Seeding Vigor of Birdsfoot Trefoil Entries Differing in Seed Size (종자 크기가 다른 두 계통의 벌노랑이 유식물의 활력 비교)

  • Hur, S.N.;Nelson, C.J.;Beuselinck, P.R.;Coutts, J.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.3
    • /
    • pp.186-194
    • /
    • 1994
  • Lack of seedling vigor is considered a serious deterrent to use of broadleafed birdsfoot trefoil (Lorus comicul~rus L.). Our objectives were to compare early seedling growth of broadleafed birdsfoot trefoil cultivar "MO-20" and the large-seeded accession 302921 at $15^{\circ}C$ and $25^{\circ}C$. in controlled-environment chambers. Cabon dioxide exchange rate (CER) was measured in a closed or open system using infrared gas analysis. Dark respiration rate was measured manometrically. Net carbon accumulated per day and growth analysis of the seedlings were calculated. Initial seed mass of 302921 was 3.5 times larger and final cotyledon area was 2 times larger than those of MO-20, and early seedling growth was better. But, from 3 weeks after emergence until the end of the test period at $25^{\circ}C$, MO-20 showed higher CER per unit leaf area and faster dry weight accumulation than did 302921. Compared with $25^{\circ}C$, growth of MO-20 at $15^{\circ}C$ was suppressed more than that of 302921. Dark respiration rate of MO-20 was slightly higher than that for 302921, but not COz uptake per day for MO-20 was highest at$25^{\circ}C$ and lowest at $25^{\circ}C$. The relative growth rate (RGR) of MO-20 was higher than 302921 at $25^{\circ}C$ due to high net assimilation rate, but there was little difference in RGR between entries at $15^{\circ}C$.}C$.

  • PDF

Changes of Characteristics Related to Photosynthesis in Synurus deltoides under Different Shading Treatments (차광처리에 따른 수리취의 광합성 관련 특성 변화)

  • Lee, Kyeong-Cheol;Noh, Hee-Sun;Kim, Jong-Whan;Ahn, Soo-Yong;Han, Sang-Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.320-330
    • /
    • 2012
  • This study was conducted to investigate the changes of chlorophyll contents, chlorophyll fluorescence, photosynthetic parameters, and leaf growth of Synurus deltoides under different shading treatments. S. deltoides was grown under non-treated (full sunlight) and three different shading conditions (Shaded 88~93%, 65~75%, and 45%~55%). Light compensation point ($L_{comp}$), dark respiration ($D_{resp}$), maximum photosynthesis rate ($Pn_{max}$), photo respiration rate ($P_{resp}$), carboxylation efficiency ($\Phi_{carb}$), and photochemical efficiency were decreased with increasing shading level; However, $CO_2$ compensation point ($CO_{2\;comp}$), total chlorophyll content, and specific leaf area (SLA) were shown the opposite trend. S. deltoides under 88~93% treatment showed the lowest photosynthetic activity such as maximum photosynthetic rate ($Pn_{max}$), photochemical efficiency, and $CO_2$ compensation point ($CO_{2\;comp}$). Therefore, photosynthetic activity will be sharply decreased with a long period of 8~12% of full sunlight. With the shading level decreased, carotenoid content and non-photochemical fluorescence quenching (NPQ) increased to prevent excessive light damage. This result suggested that growth and physiology of S. deltoides adapted to high light intensity through regulating its internal mechanism.

Biochemical Changes Induced due to Staphylococcal Infection in Spongy Alphonso Mango(Mangifera indica L.) Fruits

  • Janave, Machhindra Tukaram
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 2007
  • Spongy Alphonso mangoes were found to be infected with Staphylococcus bacteria. A Gram positive Staphylococcus strain was isolated from spongy pulp and identified from CABI Bioscience, UK, by partial 16S rDNA sequence analysis and by morphological and biochemical characterization through IMTECH, Chandigarh, India. Although identification by both of these methods indicated the organism belonged to same genus, different species names were given. Changes in total phenolics, reducing, and non-reducing sugars, respiration rate, total carotenoids, peroxidase(POX), and catalase activities were monitored during ripening of these fruits. The climacteric rise in spongy fruits was marked by an increase in respiration rate and a decrease in sugar content. Total phenolics content increased in spongy fruits as compared to ripe non-spongy fruits. Development of corky white tissue in spongy fruits was associated with about a 2.5-fold reduction in total carotenoids and a concomitant increase in lipoxygenase-mediated, $\beta$-carotene co-oxidation. A marked decrease in soluble protein content and about a 1.5-fold increase in POX activity was observed. Maximum POX activity was confined to 50-70%$(NH_4)_2SO_4$ fraction. The intense dark bands visible after POX specific substrate staining of the Native gel indicated a high expression of isoenzymes of POX in spongy fruits. Similarly, changes in levels of catalase activity were also observed in spongy fruits. The results suggest that infection of Alphonso mangoes with Staphylococcus bacteria affects the normal ripening processes of the fruit interfering with the carbohydrate and carotenoid metabolism. Also, the studies indicate the expression of POX and catalase enzymes as a plant defense response to microbial invasion.

  • PDF

Effects of light intensity and temperature on photosynthesis and respiration of Panax ginseng leaves (인삼엽(人蔘葉)의 광합성(光合成)과 호흡(呼吸)에 미치는 광도(光度) 및 온도(溫度)의 영향(影響))

  • Park, Hoon;Lee, Chong-Hwa;Bae, Hyo-Won;Hong, Young-Pyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 1979
  • Effects of temperature and light intensity on photosynthesis, respiration and chlorophyll content of ginseng (Panax ginseng C. A. Meyer) were as follow. 1. Optimum light intensity for apparent photosynthesis at $25^{\circ}C$ was 25Klux($1.35mgCO_2/dm^2{\cdot}hr$) for two years old ginseng grown in pot and 30Klux($1.94mgCO_2/dm^2{\cdot}hr$) for the six years old palmate cut leaves. Optimum temperature at 25Klux was $15^{\circ}C$ ($1.40mgCO_2$) for the 2 years old and 20 to $22^{\circ}C$ ($2.03mgCO_2$) for the 6 years old. 2. Dark respiration increased almost linearly with the increase of air temperature till $25^{\circ}C$ (2.6times between $16^{\circ}C$ to $25^{\circ}C$ for the 6 years old and 1.8 times between $15^{\circ}C$ to $25^{\circ}C$ for the 2 years old). Dark respiration was 11.1 % of net photosynthesis at $16^{\circ}C$, 17.8% at $25^{\circ}C$ for the 6 years old and 40% at $15^{\circ}C$, 64.7% at $25^{\circ}C$ for 2 years old. 3. Stomata appeared only in abaxial surface (lower epidermis) and stomatal frequency was $37per\;mm^2$. 4. Above results together with other informations quoted here strongly suggest that air temperature is much better criteria than light intensity for the improvement of shading roof material and shading construction. That is to promise maximum light intensity unless air temperature is above $25^{\circ}C$.

  • PDF