• Title/Summary/Keyword: dark channel prior

Search Result 42, Processing Time 0.017 seconds

Image Blur Estimation Using Dark Channel Prior (Dark Channel Prior를 이용한 영상 블러 측정)

  • Park, Han-Hoon;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.3
    • /
    • pp.80-84
    • /
    • 2014
  • Dark channel prior means that, for undistorted outdoor images, at least one color channel of a pixel or its neighbors have values close to 0, and thus the prior can be used to estimate the amount of distortion for given distorted images. In other words, if an image is distorted by blur, its dark channel values are averaged with neighbor pixel values and thus increase. This paper proposes a method that estimates blur strengths by analyzing the variation of dark channel values caused by blur. Through experiments with images distorted by Gaussian and horizontal motion blur with given strengths, the usefulness of the proposed method is verified.

A LabVIEW-based Video Dehazing using Dark Channel Prior (Dark Channel Prior을 이용한 LabVIEW 기반의 동영상 안개제거)

  • Roh, Chang Su;Kim, Yeon Gyo;Chong, Ui Pil
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.101-107
    • /
    • 2017
  • LabVIEW coding for video dehazing was developed. The dark channel prior proposed by K. He was applied to remove fog based on a single image, and K. B. Gibson's median dark channel prior was applied, and implemented in LabVIEW. In other words, we improved the image processing speed by converting the existing fog removal algorithm, dark channel prior, to the LabVIEW system. As a result, we have developed a real-time fog removal system that can be commercialized. Although the existing algorithm has been utilized, since the performance has been verified real - time, it will be highly applicable in academic and industrial fields. In addition, fog removal is performed not only in the entire image but also in the selected area of the partial region. As an application example, we have developed a system that acquires clear video from the long distance by connecting a laptop equipped with LabVIEW SW that was developed in this paper to a 100~300 times zoom telescope.

A Parallel Memory Suitable for SIMD Architecture Processing High-Definition Image Haze Removal in High-Speed (고화질 영상에서 고속 안개 제거를 위한 SIMD 구조에 적합한 병렬메모리)

  • Lee, Hyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.9-16
    • /
    • 2014
  • Since the haze removal algorithm using dark channel prior was introduced, many researches for improving processing speed have been addressed even if it presented impressive results. Remarkable one is using median dark channel prior. Although it has been considered as a very attactive method, processing speed is as low as ever. So, a parallel memory model which is suitable for SIMD architecture processing haze removal on high-definition images in high-speed is introduced in this paper. The proposed parallel memory model allows to access n pixels simultaneously. It is also support stride 3, 5, 7, and 11 in order to execute convolution mask operations, e.g., median filter. The proposed parallel memory model can therefore support enough data bandwidth to process the algorithm using median dark channel prior in high-speed.

Haze Removal Algorithm Using Improved Dark Channel Prior (개선된 Dark Channel Prior를 이용한 안개 제거 알고리즘)

  • Kim, Jin-Hwan;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.201-204
    • /
    • 2009
  • 본 논문에서는 한 장의 영상을 사용하여 영상 내에 존재하는 안개나 흐린 날씨 상태를 제거하는 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 dark channel prior를 사용하는 기법으로써 기존 알고리즘의 문제점을 보완하고 개선한다. 기존 알고리즘에서는 dark channel prior를 계산하여 전달량(transmission)을 추정한 후, 추정된 전달량을 영상의 모양에 맞추는 과정을 통해 정련된 전달량을 구한다. 본 논문에서는 추정된 전달량을 정련하는 과정을 개선함으로써 불필요한 메모리 사용량을 줄인다. 또한 계산량을 줄이기 위해 영상의 계층 분할을 이용한다. 실험 결과를 통하여 제안하는 알고리즘이 기존 알고리즘에 비해 개선된 성능을 발휘함을 확인한다.

  • PDF

Video Haze Removal Method in HLS Color Space (HLS 색상 공간에서 동영상의 안개제거 기법)

  • An, Jae Won;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.32-42
    • /
    • 2017
  • This paper proposes a new haze removal method for moving image sequence. Since the conventional dark channel prior haze removal method adjusts each color component separately in RGB color space, there can be severe color distortion in the haze removed output image. In order to resolve this problem, this paper proposes a new haze removal scheme that adjusts luminance and saturation components in HLS color space while retaining hue component. Also the conventional dark channel prior haze removal method is developed to obtain best haze removal performance for a single image. Therefore, if it is applied to a moving image sequence, the estimated parameter values change rapidly and the haze removed output image sequence shows unnatural glitter defects. To overcome this problem, a new parameter estimation method using Kalman filter is proposed for moving image sequence. Experimental results demonstrate that the haze removal performance of the proposed method is better than that of the conventional dark channel prior method.

No-reference Sharpness Index for Scanning Electron Microscopy Images Based on Dark Channel Prior

  • Li, Qiaoyue;Li, Leida;Lu, Zhaolin;Zhou, Yu;Zhu, Hancheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2529-2543
    • /
    • 2019
  • Scanning electron microscopy (SEM) image can link with the microscopic world through reflecting interaction between electrons and materials. The SEM images are easily subject to blurring distortions during the imaging process. Inspired by the fact that dark channel prior captures the changes to blurred SEM images caused by the blur process, we propose a method to evaluate the SEM images sharpness based on the dark channel prior. A SEM image database is first established with mean opinion score collected as ground truth. For the quality assessment of the SEM image, the dark channel map is generated. Since blurring is typically characterized by the spread of edge, edge of dark channel map is extracted. Then noise is removed by an edge-preserving filter. Finally, the maximum gradient and the average gradient of image are combined to generate the final sharpness score. The experimental results on the SEM blurred image database show that the proposed algorithm outperforms both the existing state-of-the-art image sharpness metrics and the general-purpose no-reference quality metrics.

Single Image Haze Removal Algorithm using Dual DCP and Adaptive Brightness Correction (Dual DCP 및 적응적 밝기 보정을 통한 단일 영상 기반 안개 제거 알고리즘)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.31-37
    • /
    • 2018
  • This paper proposes an effective single-image haze-removal algorithm with low complexity by using a dual dark channel prior (DCP) and an adaptive brightness correction technique. The dark channel of a small patch preserves the edge information of the image, but is sensitive to noise and local brightness variations. On the other hand, the dark channel of a large patch is advantageous in estimation of the exact haze value, but halo effects from block effects deteriorate haze-removal performance. In order to solve this problem, the proposed algorithm builds a dual DCP as a combination of dark channels from patches with different sizes, and this meets low-memory and low-complexity requirements, while the conventional method uses a matting technique, which requires a large amount of memory and heavy computations. Moreover, an adaptive brightness correction technique that is applied to the recovered image preserves the objects in the image more clearly. Experimental results for various hazy images demonstrate that the proposed algorithm removes haze effectively, while requiring much fewer computations and less memory than conventional methods.

A Single Image Defogging Algorithm Based on Multi-Resolution Method Using Histogram Information and Dark Channel Prior (히스토그램 정보와 dark channel prior를 이용한 다해상도 기반 단일 영상 안개 제거 알고리즘)

  • Yang, Seung-Yong;Yang, Jeong-Eun;Hong, Seok-Keun;Cho, Seok-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.649-655
    • /
    • 2015
  • In this paper, we propose a defogging algorithm for a single image. Dark channel prior (DCP), which is a well-known defogging algorithm, can cause halo artifacts on boundary regions, low-contrast defogging images, and requires a large computational time. To solve these problems, we use histogram information with DCP on transmission estimation regions and a multi-resolution method. Local histogram information can reduce the low-contrast problem on a defogging image, and the multi-resolution method with edge information can reduce the total computational time and halo artifacts. We validate the proposed method by performing experiments on fog images, and we confirm that the proposed algorithm is more efficient and superior than conventional algorithms.

Improved Dark Channel Prior Dehazing Algorithm by using Compensation of Haze Rate Miscalculated Area (안개량 오추정 영역 보정을 이용한 개선된 Dark Channel Prior 안개 제거 알고리즘)

  • Kim, Jong-Hyun;Cha, Hyung-Tai
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.770-781
    • /
    • 2016
  • As a result of reducing color information and edge information, object distinction in haze image occurs with difficulty. One of the famous defogging algorithm is haze removal by using 'Dark Channel Prior(DCP)', which is used to predict for transmission rate using color information of an image and eliminates haze from the image. But, In case that haze rate is estimated under color information, there is a miscalculated issue which is posed by haze rate and transmission in area with high brightness such as a white object or a light source. In this paper, We deal with a miscalculated issue by correcting from around haze rate, after application of color normalization used by main white part of image haze. Moreover, We calculation improved transmission based on the result of improved haze rate estimation. And then haze image quality is developed through refining transmission.

Dehazing in HSI Color Space with Color Correction (HSI 색 공간 색상 보정을 이용한 안개 제거 알고리즘)

  • Um, Taeha;Kim, Wonha
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.140-148
    • /
    • 2013
  • The haze removal algorithm using median dark channel prior is an efficient and fast method with relatively accurate transmission estimation. However, conventional methods may produce color distortion since the method ignores the color mismatch between estimated airlight and actual airlight. In this paper, we propose a color correction with measuring color fidelity in the HSI color space. Experimental results show that the proposed algorithm gives better color correction scheme.