• Title/Summary/Keyword: damping system

Search Result 2,244, Processing Time 0.029 seconds

Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

  • Caterino, Nicola;Georgakis, Christos T.;Spizzuoco, Mariacristina;Occhiuzzi, Antonio
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.75-92
    • /
    • 2016
  • The design of a semi-active (SA) control system addressed to mitigate wind induced structural demand to high wind turbine towers is discussed herein. Actually, the remarkable growth in height of wind turbines in the last decades, for a higher production of electricity, makes this issue pressing than ever. The main objective is limiting bending moment demand by relaxing the base restraint, without increasing the top displacement, so reducing the incidence of harmful "p-delta" effects. A variable restraint at the base, able to modify in real time its mechanical properties according to the instantaneous response of the tower, is proposed. It is made of a smooth hinge with additional elastic stiffness and variable damping respectively given by springs and SA magnetorheological (MR) dampers installed in parallel. The idea has been physically realized at the Denmark Technical University where a 1/20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been calibrated so as to develop several numerical simulations addressed to calibrate the controller, i.e., to achieve as much as possible different, even conflicting, structural goals. The results are definitely encouraging, since the best configuration of the controller leaded to about 80% of reduction of base stress, as well as to about 30% of reduction of top displacement in respect to the fixed base case.

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (2) Integrated Design Optimization (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (2) 통합최적설계)

  • Lim, Woochul;Lim, Sunghoon;Kim, Shinyu;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • In the design of a combat vehicle, various performances such as firepower, mobility and survivability, etc., should be considered. Furthermore, since these performances relate to each other, design framework which can treat an integrated system should be employed to design the combat vehicle. In this paper, we use empirical interior ballistic and 3D combat vehicle analyses for predicting firepower and mobility performances which are developed in previous study (1) integrated performance modeling. In firepower performance, pitch and roll angle by sequential firing are considered. In mobility performance, vertical acceleration after passing through a bump is regarded. However, since there are many design variables such as mass of vehicle, mass of suspension, spring and damping coefficient of suspension and tire, geometric variables of vehicle, etc., for firepower and mobility performance, we utilize analysis of variance and quality function deployment to reduce the number of design variables. Finally, integrated design optimization is carried out for integrated performance such as firepower and mobility.

Control of the Eccentric Building Using a TMD with Torsional Rigidity (비틀림 강성을 가지는 동조질량감쇠기를 이용한 편심건물의 제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • In this stury, control performance of tuned mass damper (TMD) with torsional rigidity for an eccentric structure showing torsional responses is investigated. To this end, an eccentric structure subjected to earthquake excitation is used to evaluate the control performance of torsional TMD by varying installed location and torsional rigidity of TMD, To reduce computational time required for repetitive time history analysis of an example structure having non-proportional damping system due to TMD, an equivalent analytical model is used in this study. Torsional properties of TMD usually neglected in typical TMD are verified to be effective in reduction of torsional responses of the eccentric structure. In the case of eccentric structures, it has been seen that the center of a plane of a structure may not be optimal location of TMD.

Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun;Wang, You-Wu
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.209-230
    • /
    • 2016
  • The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.

An application of wave equation analysis program to pile dynamic formulae

  • Tokhi, H.;Ren, G.;Li, J.
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.345-360
    • /
    • 2015
  • Wave equation analysis programs (WEAP) such as GRLWEAP and TNOWave were primarily developed for pre-driving analysis. They can also be used for post-driving measurement applications with some refinements. In the case of pre-driving analysis, the programs are used for the purpose of selecting the right equipment for a given ground condition and controlling stresses during pile driving processes. Recently, the program is increasingly used for the post-driving measurement application, where an assessment based on a variety of input parameters such as hammer, driving system and dynamic behaviour of soil is carried out. The process of this type of analysis is quite simple and it is performed by matching accurately known parameters, such as from CAPWAP analysis, to the parameters used in GRLWEAP analysis. The parameters that are refined in the typical analysis are pile stresses, hammer energy, capacity, damping and quakes. Matching of these known quantities by adjusting hammer, cushion and soil parameters in the wave equation program results in blow counts or sets and stresses for other hammer energies and capacities and cushion configuration. The result of this analysis is output on a Bearing Graph that establishes a relationship between ultimate capacity and net set per blow. A further application of this refinement method can be applied to the assessment of dynamic formulae, which are extensively used in pile capacity calculation during pile driving process. In this paper, WEAP analysis is carried out to establish the relationship between the ultimate capacities and sets using the various parameters and using this relationship to recalibrate the dynamic formula. The results of this analysis presented show that some of the shortcoming of the dynamic formula can be overcome and the results can be improved by the introduction of a correction factor.

Estimation of active multiple tuned mass dampers for asymmetric structures

  • Li, Chunxiang;Xiong, Xueyu
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.505-530
    • /
    • 2008
  • This paper proposes the application of active multiple tuned mass dampers (AMTMD) for translational and torsional response control of a simplified two-degree-of-freedom (2DOF) structure, able to represent the dynamic characteristics of general asymmetric structures, under the ground acceleration. This 2DOF structure is a generalized 2DOF system of an asymmetric structure with predominant translational and torsional responses under earthquake excitations using the mode reduced-order method. Depending on the ratio of the torsional to the translational eigenfrequency, i.e. the torsional to translational frequency ratio (TTFR), of asymmetric structures, the following three cases can be distinguished: (1) torsionally flexible structures (TTFR < 1.0), (2) torsionally intermediate stiff structures (TTFR = 1.0), and (3) torsionally stiff structures (TTFR > 1.0). The even distribution of the AMTMD within the whole width and half width of the asymmetric structure, thus leading to three cases of installing the AMTMD (referred to as the AMTMD of case 1, AMTMD of case 2, AMTMD of case 3, respectively), is taken into account. In the present study, the criterion for searching the optimum parameters of the AMTMD is defined as the minimization of the minimum values of the maximum translational and torsional displacement dynamic magnification factors (DMF) of an asymmetric structure with the AMTMD. The criterion used for assessing the effectiveness of the AMTMD is selected as the ratio of the minimization of the minimum values of the maximum translational and torsional displacement DMF of the asymmetric structure with the AMTMD to the maximum translational and torsional displacement DMF of the asymmetric structure without the AMTMD. By resorting to these two criteria, a careful examination of the effects of the normalized eccentricity ratio (NER) on the effectiveness and robustness of the AMTMD are carried out in the mitigation of both the translational and torsional responses of the asymmetric structure. Likewise, the effectiveness of a single ATMD with the optimum positions is presented and compared with that of the AMTMD.

Structural model updating of the Gageocho Ocean Research Station using mass reallocation method

  • Kim, Byungmo;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.291-309
    • /
    • 2020
  • To study oceanic and meteorological problems related to climate change, Korea has been operating several ocean research stations (ORSs). In 2011, the Gageocho ORS was attacked by Typhoon Muifa, and its structural members and several observation devices were severely damaged. After this event, the Gageocho ORS was rehabilitated with 5 m height to account for 100-yr extreme wave height, and the vibration measurement system was equipped to monitor the structural vibrational characteristics including natural frequencies and modal damping ratios. In this study, a mass reallocation method is presented for structural model updating of the Gageocho ORS based on the experimentally identified natural frequencies. A preliminary finite element (FE) model was constructed based on design drawings, and several of the candidate baseline FE models were manually built, taking into account the different structural conditions such as corroded thickness. Among these candidate baseline FE models, the most reasonable baseline FE model was selected by comparing the differences between the identified and calculated natural frequencies; the most suitable baseline FE model was updated based on the identified modal properties, and by using the pattern search method, which is one of direct search optimization methods. The mass reallocation method is newly proposed as a means to determine the equivalent mass quantities along the height and in a floor. It was found that the natural frequencies calculated based on the updated FE model was very close to the identified natural frequencies. In conclusion, it is expected that these results, which were obtained by updating a baseline FE model, can be useful for establishing the reference database for jacket-type offshore structures, and assessing the structural integrity of the Gageocho ORS.

Research on Dynamic Behavior of Double-Layer Barrelvault Arch Systems Subjected to Earthquake Loadings (지진하중에 대한 복층 배럴볼트 시스템의 동적거동에 대한 연구)

  • Shin, Ji-Wook;Lee, Ki-Hak;Jung, Chan-Woo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • This paper presents dynamic behavior of double-layer barrelvault systems subjected to earthquake loadings. In order to investigate different seismic behaviors according to Time History Analysis (THA), six open angles were employed and different fundamental frequencies corresponding to each open angle were considered. A total of 24 double-layer structures were developed by using Midas Gen., which is a computer analysis program and then THA with three different earthquakes with 5% damping ratio was performed. This study investigated the characteristics of the dynamic response for X-, Y- and Z- directions, both subjected to the horizontal earthquake (H) and applied to the vertical earthquake (V) with respect to the each variable, which assumed to be important aspects for spatial structure. In order to examine the dynamic characteristics, the ratio of acceleration in specific nodes of barrelvaults was evaluated at the time with maximum response. The main purpose of this study is to obtain equations of the equivalent earthquake loading with respect to the barrelvault systems.

  • PDF

Modeling the Calculation of Lateral Accelerations in Railway Vehicles as a Tool of Alignment Design

  • Nasarre, J.;Cuadrado, M.;Requejo, P.Gonzalez;Romo, E.;Zamorano, C.
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.118-123
    • /
    • 2009
  • Railway track alignment Standards set a minimum lenght value for straight and circular alignments (art. 5.2.9.), in order to ensure passenger ride comfort in railway vehicles of which dynamic oscillations will thus have to be limited. The transitions between alignments can cause abrupt changes (usually called discontinuities or singular points of the alignment) of curvature, of rate of change of curvature or of rate of change of cant. A passenger is likely to experience effects due to the excitation of the elastic suspension of the vehicle which generates oscillations that are damped as the vehicle moves away from the singularity. The amplitude of these oscillations should be adequately attenuated by the damping of the suspension system within the interval between two successive singular points, especially to avoid resonances. Therefore minimum lengths between two successive singular points are stated in alignment standards. Nevertheless, these nonnative values can be overly conservative in some cases. As an alternative, track alignment designers could try to assess how much the excitation has been attenuated between two successive singular points and thus assess at which point a new singularity may be present without affecting ride comfort. Although such assessment can be made with commercial SW packages which simulate the dynamic behavior of a vehicle considered as a set of rigid bodies interconnected with elastic elements simulating the suspension systems (such as SIMPACK, ADAMS or VAMPIRE), a simplified and user-friendly computation method (based upon the analytical solution of differential equations governing the phenomenon) is made available in this paper to track design engineers, not always used to working with full dynamic models.

  • PDF

Effects of Planting Time and Mulching Materials on Growth Characteristics and Yield in Cassia tora L. (결명(決明)의 파종기(播種期)와 피복재료(被覆材料)가 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Lee, He-Duck;Kim, Chang-Yeong;Rho, Tae-Hong;Lee, Jong-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.1 no.2
    • /
    • pp.158-161
    • /
    • 1993
  • This experiments were carried out determine planting date for highest Yields and select an covering material for enhancement of environments in Cassia tora L.The highest Yields by regressions estimate produced 352 kg/10a at May 18. of coure, it is possible to plant at June and early-July in spite of slight decreas of Yields, therefore Cassia tora L. is benefit to establish cropping system with barley, wheat or other crops. The covering materials for highest yielding was Black-white nonporous PE(low density) and it out yielded about 53% than conventional cultivations. Cassia tora L. is possible to produce Without agricultural medicines because of little occurence of decrease except occuring of Damping off(Rhizoctonia solanikuhn) at early planting.

  • PDF