• Title/Summary/Keyword: damping system

Search Result 2,251, Processing Time 0.024 seconds

Drop and Damping Characteristics of the CEDM for the Integral Reactor (일체형원자로 제어봉구동장치의 낙하 및 완충특성)

  • Choi, M.H.;Kim, J.H.;Huh, H.;Yu, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.658-664
    • /
    • 2010
  • A control element drive mechanism(CEDM) is a reactor regulating system, which inserts, withdraws or maintains a control rod containing a neutron absorbing material within a reactor core to control the reactivity of the core. The ball-screw type CEDM for the integral reactor has a spring-damper system to reduce the impact force due to the scram of the CEDM. This paper describes the experimental results to obtain the drop and damping characteristics of the CEDM. The drop tests are performed by using a drop test rig and a facility. A drop time and a displacement after an impact are measured using a LVDT. The influences of the rod weight, the drop height and the flow area of hydraulic damper on the drop and damping behavior are also estimated on the basis of test results. The drop time of the control element is within 4.5s to meet the design requirement, and the maximum displacement is measured as 15.6 mm. It is also found that the damping system using a spring-hydraulic damper plays a good damper role in the CEDM.

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

Effect of Seal Wear on the Rotordynamics of a Multistage Turbine Pump (시일의 마멸이 다단 터빈 펌프 동특성에 미치는 영향)

  • 김영철;이동환;이봉주
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1015-1023
    • /
    • 1997
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on its system behavior. Stiffness and damping coefficents of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annuler seals are calculated as functions of rotating speed as well as seal clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in vibration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Design of supplemental viscous dampers in inelastic SDOF system based on improved capacity spectrum method

  • Li, Bo;Liang, Xing-Wen
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.541-554
    • /
    • 2007
  • A simplified yet effective design procedure for viscous dampers was presented based on improved capacity spectrum method in the context of performance-based seismic design. The amount of added viscous damping required to meet a given performance objective was evaluated from the difference between the total demand for effective damping and inherent damping plus equivalent damping resulting from hysteretic deformation of system. Application of the method is illustrated by means of two examples, using Chinese design response spectrum and mean response spectrum. Nonlinear dynamic analysis results indicate that the maximum displacements of structures installed with supplemental dampers designed in accordance with the proposed method agree well with the given target displacements. The advantage of the presented procedure over the conventional iterative design method is also highlighted.

Effect of Microstructure on the Damping Capacity of 12Cr Martensitic Heat-resisting Steel (12Cr 마르텐사이트계 내열강의 감쇠능에 미치는 미세조직의 영향)

  • Lee, S.M.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • This study was carried out to investigate the effect of microstructure on the damping capacity of 12Cr martensite heat-resisting steels, in case of the specimen with martensite phase contained the volume faction of ferrite phases, under 5%. The damping capacity was decreased with the increase of solution treatment temperature and time. While it was increased with the increase of tempering temperature and time. The damping capacity was higher in case of specimen with martensite single phase structure than the specimen with martensite phase contained of ferrite phases.

Effect of Sound Damping Sheet on Sound Transmission Loss in Building Structure (건축 구조물에의 차음시트 적용)

  • Kim, Sang-Ryul;Kim, Jae-Seung;Kim, Hyun-Sil;Kang, Hyun-Ju;Mah, Kyung-Up;Han, Mun-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1723-1728
    • /
    • 2000
  • This paper deals experimentally with the effect of the sound-damping sheet on building wall system; brick wall, light wall panel, and gypsum board. Experimental results show that when the sound-damping sheet is attached on wall systems, the mass and/or damping effects result in increasing of STL of wall system depending on the characteristics of the original partition. It is pointed out that the performances of sound damping sheets must be presented with specific wall structures that applied, not by the sound transmission loss of the sheet itself.

  • PDF

시일의 마멸로 인한 다단터빈펌프의 위험속도 변화

  • Kim, Yeong-Cheol;Lee, Dong-Hwan;Lee, Bong-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.203-209
    • /
    • 1998
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on Its system behavior. Stiffness and damping coefficients of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annular seals are calculated as functions of rotating speed as well as seal clearance. As the clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in nitration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Design of an Active Damping Layer Using Topology Optimization (위상 최적화를 이용한 능동 감쇠층의 설계)

  • 김태우;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.660-664
    • /
    • 2003
  • The optimal thickness distribution of an active damping layer is sought so that it satisfies a certain constraint on the dynamic performance of a system minimizing control efforts. To obtain a topologically optimized configuration, which includes size and shape optimization, thickness of the active damping layer is interpolated using linear functions. With the control energy as the objective function to be minimized, the state error energy is introduced as the dynamic performance criterion for the system and used lot a constraint. The optimal control gains are evaluated from LQR simultaneously as the optimization of the layer position proceeds. From numerical simulation, the topologically optimized distribution of the active damping layer shows the same dynamic performance and cost as the Idly covered counterpart, which is optimized only in terms of control gains, with less amount of the layer.

  • PDF

Effect of Heat Treatment on the Microstructure and Damping Capacity of Hot Rolled Magnesium Alloys (열간 압연 한 Mg합금의 미세조직과 감쇠능에 미치는 열처리의 영향)

  • Lee, Gyu-Hyun;Kim, Kwon-Hoo;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.66-71
    • /
    • 2014
  • In this study, effect of heat treatment on the microstructure and damping capacity of hot rolled magnesium alloys was investigated. The microstructure of hot rolled magnesium consisted of dendrite structure and $Mg_{17}Al_{12}$ compounds precipitated along the grain boundry. The dendrite structure was dissipated and $Mg_{17}Al_{12}$ compounds was decomposed by annealing treatment, and then they dissolved in ${\alpha}-Mg$. With an increasing the annealing temperature and time, damping capacity was slowly increased by the growth of grain size and decreasing of defects induced by hot rolling. Two kinds of magnesium alloys AZ 31 and AZ 61 after annealing showed no difference in damping capacity.

Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가)

  • Park, B.J.;Jung, S.Y.;Han, S.C.;Han, S.J.;Lee, D.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.