• 제목/요약/키워드: damping ratios

검색결과 378건 처리시간 0.021초

건물 구조물을 위한 능동 제어 효과를 가지는 수동 점성감쇠기의 최적 설계 (Optimal Design of Passive Viscoelastic Dampers Having Active Control Effect for Building Structures)

  • 황재승;민경원;홍성목
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.225-234
    • /
    • 1995
  • In this study, first, transformation process of damping ratios, whose are evaluated in active control analysis, into damping matrix resulting from installed viscous dampers is illustrated. Then, a method is followed to maximize the effect of response reduction, which leads to optimum locations and size of viscous dampers using sensitivity analysis. Highly coupled nonlinearity between damping ratios and dampers makes it hard to find the optimal size of dampers. Therefore, the nonlinearity is transformed to linear problem with small increments of damping ratios and the size of dampers can be found. However, there are many cases for the size of dampers satisfying the small increment of damping ratios, so it is necessary to select minimum size using optimization technique. To determine optimum locations of dampers, dampers are assumed to be installed between the different stories and their locations are selected corresponding corresponding to the degree of damping size. Numerical examples for the frame structure and the shear wall structure show that optimum locations and size of dampers are different form each other depending on the characteristics of modal responses of the structures. The proposed method in this study can be applied to get optimum locations of active controller in the active control.

  • PDF

선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향 (Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems)

  • 윤장상;이양우;송창섭
    • 한국정밀공학회지
    • /
    • 제6권4호
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Determining minimum analysis conditions of scale ratio change to evaluate modal damping ratio in long-span bridge

  • Oh, Seungtaek;Lee, Hoyeop;Yhim, Sung-Soon;Lee, Hak-Eun;Chun, Nakhyun
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.41-55
    • /
    • 2018
  • Damping ratio and frequency have influence on dynamic serviceability or instability such as vortex-induced vibration and displacement amplification due to earthquake and critical flutter velocity, and it is thus important to make determination of damping ratio and frequency accurate. As bridges are getting longer, small scale model test considering similitude law must be conducted to evaluate damping ratio and frequency. Analysis conditions modified by similitude law are applied to experimental test considering different scale ratios. Generally, Nyquist frequency condition based on natural frequency modified by similitude law has been used to determine sampling rate for different scale ratios, and total time length has been determined by users arbitrarily or by considering similitude law with respect to time for different scale ratios. However, Nyquist frequency condition is not suitable for multimode system with noisy signals. In addition, there is no specified criteria for determination of total time length. Those analysis conditions severely affect accuracy of damping ratio. The focus of this study is made on the determination of minimum analysis conditions for different scale ratios. Influence of signal to noise ratio is studied according to the level of noise level. Free initial value problem is proposed to resolve the condition that is difficult to know original initial value for free vibration. Ambient and free vibration tests were used to analyze the dynamic properties of a system using data collected from tests with a two degree-of-freedom section model and performed on full bridge 3D models of cable stayed bridges. The free decay is estimated with the stochastic subspace identification method that uses displacement data to measure damping ratios under noisy conditions, and the iterative least squares method that adopts low pass filtering and fourth order central differencing. Reasonable results were yielded in numerical and experimental tests.

확장형 칼만 필터를 이용한 고속철도교의 감쇠비 분석 (Damping Estimation of High Speed Railway Bridges Using Extended Kalman Filter)

  • 전법규;박동욱;김남식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.82-83
    • /
    • 2008
  • In the cases of high speed railway bridge, dynamic behavior analysis is important because of high passing velocity and moving load at the regular intervals, and the damping ratio is a major element in dynamic behavior analysis. In this paper, damping ratios were estimated by two methods and vibration type sections, and relationship between estimated damping ratio and representative value of bridge vibration. At the results, estimated damping ratio using all time of vibration were more stable then using only free vibration section. And in the case of using extended Kalman filter, estimated damping ratio were trend of growth by growth of representative value of bridge vibration. At last, it was shown that study about reliabilities of estimated damping ratios were need.

  • PDF

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

헬리콥터용 차세대 블레이드의 공력탄성학적 안정성에 관한 시험적 연구 (An Experimental Investigation of the Aeroelastic Stability of Next-Generation Blade for Helicopter)

  • 송근웅;김준호;김승호;이제동;이욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.680-685
    • /
    • 2006
  • This paper describes the aeroelastic stability test of the small-scaled 'Next-Generation Blade(NRSB)' with NRSH (Next-Generation Hub System) and HCTH hingeless hub system in hover and forward flight conditions. Excitation tests of rotor system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were tarried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, NRSB-1F blades with HCTH hub system, Then NRSB-1F with NRSH hub system were tested. Second, NRSB-2F blades with NRSH hub system were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Non-rotating natural frequencies, non-rotating damping ratios and rotating natural frequencies were showed similar level fir each cases. Estimated damping ratios of NRSB-1F, NRSB-2F with HCTH and NRSH were above 0.5%, and damping ratio increased by collective pitch angle increasement. Furthermore damping ratios of NRSB-2F were higher than damping ratios of NRSB-1F in high pitch angle. It was confirmed that the blade design for noise reduction would give observable improvement in aeroelastic stability compared to paddle blade and NRSB-1F design.

  • PDF

헬리콥터용 차세대 블레이드의 공력탄성학적 안정성에 관한 시험적 연구 (An Experimental Investigation of the Aeroelastic Stability of Next-generation Blade for Helicopter)

  • 김준호;김승호;이제동;이욱;송근웅
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.848-856
    • /
    • 2006
  • This paper describes the aeroelastic stability test of the small-scaled 'Next-generation Blade(NRSB)' with NRSH (next-generation hub system) and HCTH hingeless hub system in hover and forward flight conditions. Excitation tests of rotor system installed in GSRTS (general small-scale rotor test system) at KARI (Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(moving block analysis) technique was used for the estimation of lead-lag damping ratio. First, NRSB-1F blades with HCTH hub system, then NRSB- 1F with NRSH hub system were tested. Second, NRSB-2F blades with NRSH hub system were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Non-rotating natural frequencies, non-rotating damping ratios and rotating natural frequencies were showed similar level for each cases. Estimated damping ratios of NRSB-1F, NRSB-2F with HCTH and NRSH were above 0.5%, and damping ratio increased by collective pitch angle increasement. Furthermore damping ratios of NRSB-2F were higher than damping ratios of NRSB-1F in high Pitch angle. It was confirmed that the blade design for noise reduction would give observable improvement in aeroelastic stability compared to paddle blade and NRSB-1F design.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

SC구조의 내진설계를 위한 감쇠비 (Damping Ratios for Seismic Design of SC Structures)

  • 이승준;김원기
    • 한국강구조학회 논문집
    • /
    • 제22권5호
    • /
    • pp.487-496
    • /
    • 2010
  • 미국의 NRC(United States Nuclear Regulatory Commission)에서 발간된 "Regulatory Guide 1.61 of United States NRC(2007)"는 원전구조물의 내진설계에 적용되는 구조감쇠비를 철근콘크리트(이하 RC)구조의 경우 4%(OBE)와 7%(SSE), 강구조의 경우 3%(OBE)와 4%(SSE)를 규정하고 있다. 그러나 최근 개발된 강판-콘크리트(이하 SC)구조의 경우 구조감쇠비에 대한 규정이 없다. 본 연구의 목적은 RC구조와 SC구조의 감쇠비의 상대적 차이를 비교함으로서 SC구조의 감쇠비를 조사하는 것이다. 4개의 실험체, RC-S, RC-M, SC-S 그리고 SC-M에 대한 실험적 연구가 수행되었다. 뒷 글자 S와 M은 실험체의 거동이 전단에 의해 지배되는 것과 휨에 의해 지배되는 것을 의미한다. 실험방법은 엑츄에이터와 실험체의 질량사이를 연결하는 인장시험편이 파단되면서 실험체의 자유진동을 발생하게 하는 방법을 적용하였다. 가속도계를 이용하여 측정된 실험데이타를 분석하여 하중의 크기에 따른 기본진동수와 감쇠비를 결정하였다. 4개 실험체의 감쇠비를 비교분석하여 SC구조의 감쇠비는 OBE해석에 RC구조와 동일하게 4%를 제안하였으며 SSE해석의 경우 RC구조의 감쇠비보다 1% 적은 6%를 제안하였다.

Effects of turbulence intensity and exterior geometry on across-wind aerodynamic damping of rectangular super-tall buildings

  • Quan, Y.;Cao, H.L.;Gu, M.
    • Wind and Structures
    • /
    • 제22권2호
    • /
    • pp.185-209
    • /
    • 2016
  • Across-wind aerodynamic damping ratios are identified from the wind-induced acceleration responses of 15 aeroelastic models of rectangular super-high-rise buildings in various simulated wind conditions by using the random decrement technique. The influences of amplitude-dependent structural damping ratio and natural frequency on the estimation of the aerodynamic damping ratio are discussed and the identifying method for aerodynamic damping is improved at first. Based on these works, effects of turbulence intensity $I_u$, aspect ratio H/B, and side ratio B/D on the across-wind aerodynamic damping ratio are investigated. The results indicate that turbulence intensity and side ratio are the most important factors that affect across-wind aerodynamic damping ratio, whereas aspect ratio indirectly affects the aerodynamic damping ratio by changing the response amplitude. Furthermore, empirical aerodynamic damping functions are proposed to estimate aerodynamic damping ratios at low and high reduced speeds for rectangular super-high-rise buildings with an aspect ratio in the range of 5 to 10, a side ratio of 1/3 to 3, and turbulence intensity varying from 1.7% to 25%.