• 제목/요약/키워드: damping applications

검색결과 169건 처리시간 0.02초

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

A semi-active smart tuned mass damper for drive shaft

  • 채교초;박정헌;이철희;박정률;윤동영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.349-354
    • /
    • 2011
  • Tuned mass damper is widely used in many applications of industry. The main advantage of tuned mass damper is that it can increase the damping ratio of system and reduce the vibration amplitude. Meanwhile, the natural frequency of system will be divided by two peaks, and the peak speeds are closely related to the mass and the stiffness of auxiliary mass system added. In addition, the damping ratio will also affect the peak frequency of the dynamic response. In the present research, the nonlinear mechanical characteristics of rubber is investigated and put into use, since it is usually manufactured as the spring element of tuned mass damper. By the sense of the nonlinear stiffness as well as the damping ratio which can be changed by preload applied on, the shape memory alloy is proposed to control the auxiliary mass system by self-optimizing. Supported by the experiment data of rubber, the 1 DOF theoretical model and finite element model based on computer simulation are implemented to perform the feasibility of the proposed semi-active tuned mass damper working on the drive shaft.

  • PDF

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • Park, Young-Ho;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권4E호
    • /
    • pp.164-169
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

실리콘 에피층을 이용한 자동차 에어백용 가속도계 (Airbag Accelerometers Using Silicon Epitaxial Layers)

  • 고종수;김규현;이창렬;조영호;이귀로;곽병만
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.9-15
    • /
    • 1996
  • A silicon microaccelerometer is designed and fabricated using silicon epitaxial layers for automotive electronic airbag applications. A cantilever structure is chosen for high sensitivity and piezoresistive detection method is adopted for circuit simplicity and low cost. An optimum design is used to find optimum microstructure sizes for maximum sensitivity subject to performance requirements and design constraints on natural frequency, damping ratio, maximum allowable stress and microfabrication limitations. The microaccelerometer is fabricated by micromachining processing steps, composed of material-selective and orientation-dependent chemical etching techniques. Fabricated prototype shows a sensitivity of 88.6$\mu\textrm{V}$/g within a resonant frequency of 1.75KHz. Estimated performance of the microaccelerometer is compared with measured one. Discrepancy between the theoretical values and the experimental values is discussed together with possible sources of the errors.

  • PDF

MR 엘라스토머의 감쇠 및 강성 특성에 대한 실험조사 (Experimental Study on the Damping and Stiffness Characteristics of MR Elastomers)

  • 곽문규;정문산;배병찬;허석;송명호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1137-1141
    • /
    • 2007
  • This paper is concerned with the experimental research of magnetorheological elastomers (MREs). The modulus of the MR elastomers can be controlled by an applied magnet field, so that it can be effectively used for vibration suppression applications. The MR elastomer in this experiment is a mixture of KE-1300 silicone, carbonyl iron powder (300mesh) and a silicone hardener (CAT-1300). Three specimens were manufactured and tested by using the vibration testing instruments. The magnetic field was generated by the permanent magnets. The experimental results show that the natural frequencies of the test article with MR elastomer changes by the applied magnetic field. The performance of the MR elastomer can be increased by stronger magnetic fields. This is under investigation.

  • PDF

이동구간 최적 제어에 의한 전력계통 안정화의 분산제어 접근 방법 (A Decentralized Approach to Power System Stabilization by Artificial Neural Network Based Receding Horizon Optimal Control)

  • 최면송
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권7호
    • /
    • pp.815-823
    • /
    • 1999
  • This study considers an implementation of artificial neural networks to the receding horizon optimal control and is applications to power systems. The Generalized Backpropagation-Through-Time (GBTT) algorithm is presented to deal with a quadratic cost function defined in a finite-time horizon. A decentralized approach is used to control the complex global system with simpler local controllers that need only local information. A Neural network based Receding horizon Optimal Control (NROC) 1aw is derived for the local nonlinear systems. The proposed NROC scheme is implemented with two artificial neural networks, Identification Neural Network (IDNN) and Optimal Control Neural Network (OCNN). The proposed NROC is applied to a power system to improve the damping of the low-frequency oscillation. The simulation results show that the NROC based power system stabilizer performs well with good damping for different loading conditions and fault types.

  • PDF

The applications and conduct of vibration equations for constrained layered damped plates with impact

  • Luo, G.M.;Lee, Y.J.;Huang, C.H.
    • Steel and Composite Structures
    • /
    • 제8권4호
    • /
    • pp.281-296
    • /
    • 2008
  • Visco-elastic material and thin metals were adhered to plate structures, forming the composite components that are similar to the sandwich plates, called constrained layered damped (CLD) plates. Constrained layer damping has been utilized for years to reduce vibration, and advances in computation and finite element analysis software have enabled various problems to be solved by computer. However, some problems consume much calculation time. The vibration equation for a constrained layered damped plate with simple supports and an impact force is obtained theoretically herein. Then, the results of the vibration equation are compared with those obtained using the finite element method (FEM) software, ABAQUS, to verify the accuracy of the theory. Finally, the 3M constrained layer damper SJ-2052 was attached to plates to form constrained layered damped plates, and the vibration equation was used to elucidate the damping effects and vibration characteristics.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • 박영호;홍석윤
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.164-164
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Carbon Fibers (I): General Understanding and Manufacturing Techniques of Carbon Fibers

  • Seo, Min-Kang;Choi, Kyeong-Eun;Min, Byung-Gak;Park, Soo-Jin
    • Carbon letters
    • /
    • 제9권3호
    • /
    • pp.218-231
    • /
    • 2008
  • Carbon fibers are a new breed of high-strength materials which have been described as a fiber containing at least 90% carbon obtained by the controlled pyrolysis of appropriate fibers. Carbon fiber composites are ideally suited to applications where strength, stiffness, lower weight, and outstanding fatigue characteristics are critical requirements. They also can be used in the occasion where high temperature, chemical inertness and high damping are important. In recent decades, carbon fibers have found wide applications in commercial and civilian aircraft, recreational, industrial, and transportation markets. Therefore, understanding the basic structure, synthesis and physicochemical properties of carbon fibers is very important to apply them as a precursor of above applications. This review paper discuss the general information and manufacture technique of carbon fibers used for improving the performance of composite materials in various industries for the present.

자기유변 물질의 강성제어를 위한 자기 차폐 원리 기반의 자기장 발생기 설계 (Design of Magnetic Field Generator based on Magnetic Shield Effect for Stiffness Control of Magnetorheological Material)

  • 장대익;박재은;김영근
    • 대한기계학회논문집A
    • /
    • 제41권9호
    • /
    • pp.861-868
    • /
    • 2017
  • 본 연구는 자기유변 겔의 강성 및 댐핑 제어에 필수적으로 요구되는 자기장 제어를 위한 자기장 발생기의 설계를 제안한다. 자기유변 물질은 자기장의 세기에 따라서 동적 점 탄성 특성이 바뀌는 스마트 물질로 진동 흡수기, 자동차의 서스펜션과 같은 분야에 사용되기 위해 여러 방면으로 연구되고 있다. 자기유변 물질의 어플리케이션 적용을 위해 현재 사용되고 있는 자기장 발생기의 종류로는 전자석과 영구자석이 있으며, 대부분의 실제 산업에서는 주로 전자석을 이용하여 자기장을 발생 및 제어한다. 하지만 전자석은 발열문제 등 여러 단점으로 인해 장시간 사용에 적합하지 않으며, 영구자석의 경우 자기장 세기의 변화에 필요한 자기유변 물질과 영구자석 간의 거리 조절을 위해 여분의 공간이 요구되어 시스템 부피가 커지는 단점이 있다. 따라서 본 연구에서는 자기 차폐 원리를 기반으로 한 자기장 발생기를 제안하여 기존의 전자석과 영구자석이 가지는 단점을 해결하고 장시간 사용 및 실제 산업에서 적용이 가능하도록 하고자 한다.