• Title/Summary/Keyword: damped vibration

Search Result 202, Processing Time 0.015 seconds

Model on the Contact Lens Movement from Eye-lid Blinking (순목 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Daesoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.145-159
    • /
    • 2004
  • A mathematical model and its computer solution program were proposed to analyze the motion of contact lenses which are being subject to lid-blinking. The equation was derived by incorporating an acceleration induced lid's force exerting on the contact lens, the viscous damping resistance in the tear layer beneath the lens and the sliding frictional force between the lid and the contact lens surface into the formulation of differential equation describing the vibration. The model predicts the time-dependent displacement from the equilibrium postion during/after the blinking. During the blinking, as the time for the completion of one cycle of blinking decreases the off-the-equilibrium displacement of contact lens increases while the decrease of diameter in the contact cause the opposite effect. It is found that lid pressure exerting on the lens cause an insignificant lens displacement from the equilibrium position. After blinking the frequency of damped oscillation of contact lens decreases as the diameter of lens increases, due to the incresed surface while the reduced blinking time does not cause a significant frequency change. This is because that driving force for the contact lens movement posterior to blinking is the capillary-induced force not the lid force.

  • PDF

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.