• 제목/요약/키워드: damaged reinforced concrete

Search Result 321, Processing Time 0.263 seconds

Repair of seismically damaged RC bridge bent with ductile steel bracing

  • Bazaez, Ramiro;Dusicka, Peter
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.745-757
    • /
    • 2018
  • The inclusion of a ductile steel bracing as means of repairing an earthquake-damaged bridge bent is evaluated and experimentally assessed for the purposes of restoring the damaged bent's strength and stiffness and further improving the energy dissipation capacity. The study is focused on substandard reinforced concrete multi-column bridge bents constructed in the 1950 to mid-1970 in the United States. These types of bents have numerous deficiencies making them susceptible to seismic damage. Large-scale experiments were used on a two-column reinforced concrete bent to impose considerable damage of the bent through increasing amplitude cyclic deformations. The damaged bent was then repaired by installing a ductile fuse steel brace in the form of a buckling-restrained brace in a diagonal configuration between the columns and using post-tensioned rods to strengthen the cap beam. The brace was secured to the bent using steel gusset plate brackets and post-installed adhesive anchors. The repaired bent was then subjected to increasing amplitude cyclic deformations to reassess the bent performance. A subassemblage test of a nominally identical steel brace was also conducted in an effort to quantify and isolate the ductile fuse behavior. The experimental data from these large-scale experiments were analyzed in terms of the hysteretic response, observed damage, internal member loads, as well as the overall stiffness and energy dissipation characteristics. The results of this study demonstrated the effectiveness of utilizing ductile steel bracing for restoring the bent and preventing further damage to the columns and cap beams while also improving the stiffness and energy dissipation characteristics.

Rehabilitation of normal and self-compacted steel fiber reinforced concrete corbels via basalt fiber

  • Gulsan, Mehmet Eren;Al Jawahery, Mohammed S.;Alshawaf, Adnan H.;Hussein, Twana A.;Abdulhaleem, Khamees N.;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.423-463
    • /
    • 2018
  • This paper investigates the behavior of normal and self-compacted steel fiber reinforced concrete (SCC-SFRC) corbels rehabilitated by Basalt Fiber Mesh (BFM) and Basalt Fiber Fabric (BFF) for the first time in literature. The research objective is to study the effectiveness of BFM and BFF in the rehabilitation of damaged reinforced concrete corbels with and without epoxy injection. The experimental program includes two types of concrete: normal concrete, and self-compacted concrete. For normal concrete, 12 corbels were rehabilitated by BFM without injection epoxy in cracks, with two values of compressive strength, three ratios of steel fiber (SF), and two values of shear span. For self-compacted concrete, 48 corbels were rehabilitated with different parameters where 12 corbels were rehabilitated by BFM with and without epoxy injection, 18 heated corbels with three different high-temperature level were rehabilitated by repairing cracks only by epoxy injection, and 18 heated corbels with three different high-temperature level were rehabilitated by repairing cracks by epoxy and wrapping by BFF. All 48 corbels have two values of compressive strength, three values volumetric ratios of SF, and two values of the shear span. Test results indicate that RC corbels rehabilitated by BFM only without injection did not show any increase in the ultimate load capacity. Moreover, For RC corbels that were repaired by epoxy without basalt wrapping, the ultimate load capacities showed an increase depending on the mode of failure of corbels before the rehabilitation. However, the rehabilitation with only crack repairing by epoxy injection is more effective on medium strength corbels as compared to high strength ones. Finally, it can be concluded that use of BFF is an effective and powerful technique for the strengthening of damaged RC corbels.

A Nonlinear Finite Element Analysis to Study the Behavior on Artificially Damaged R/C Shear Walls with Opening Configuration (개구부 설치를 위한 인위적 손상을 입은 전단벽에 관한 비선형 유한요소해석)

  • Han Min Ki;Park Wan Shin;Kim Hyo-Jin;Choi Gi-Bong;Choi Chang Sik;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.429-432
    • /
    • 2004
  • This paper discussed finite element method(FEM) models of the reinforced concrete rectangular shear walls with opening configuration and analysed under constant axial and monotonic lateral load using ABAQUS. The research comprises constitutive models to represent behavior of the materials that compose a wall on the basis of experimental data, development of techniques that are appropriate for analysis of reinforced concrete structures, verification, and calibration of the global model for reinforced concrete shear walls of increasing complexity. Results from the analyses of these FEM models offers significant insight into the flexural behavior of benchmark data.

  • PDF

Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensors

  • Tzoura, Efi A.;Triantafillou, Thanasis C.;Providakis, Costas;Tsantilis, Aristomenis;Papanicolaou, Corina G.;Karabalis, Dimitris L.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.165-180
    • /
    • 2015
  • In this paper lead zirconate titanate transducers (PZT) are employed for damage detection of four reinforced concrete (RC) column specimens retrofitted with carbon fiber reinforced polymer (CFRP) jackets. A major disadvantage of FRP jacketing in RC members is the inability to inspect visually if the concrete substrate is damaged and in such case to estimate the extent of damage. The parameter measured during uniaxial compression tests at random times for known strain values is the real part of the complex number of the Electromechanical Admittance (Conductance) of the sensors, obtained by a PXI platform. The transducers are placed in specific positions along the height of the columns for detecting the damage in different positions and carrying out conclusions for the variation of the Conductance in relation to the position the failure occurred. The quantification of the damage at the concrete substrate is achieved with the use of the root-mean-square-deviation (RMSD) index, which is evaluated for the corresponding strain values. The experimental results provide evidence that PZT transducers are sensitive to damage detection from an early stage of the experiment and that the use of PZT sensors for monitoring and detecting the damage of FRP-retrofitted reinforced concrete members, by using the Electromechanical Admittance (EMA) approach, can be a highly promising method.

An Analytic Method for the Residual Strength Evaluation of Fire-Damaged Reinforced Concrete Beam

  • Park, Won-jun;Park, Ki-bong;Lee, Han-seung
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.37-42
    • /
    • 2008
  • This study is to get the proper evaluation of the residual property of reinforced concrete beam exposed to fire. This study focused on the strength resistance and analytical evaluation of RC members exposed high temperature. And this study is the basis analytical research to conduct the other studies. To analysis by the finite element method, the Total-RC program was used to analysis it and the Total-Temp program was also used to analysis the temperature distributions at the section. All of results were compared with the pre-existing experimental data of simple supported beam. Using it, the parameters influencing the structural capacity of the high temperature-damaged RC members and residual strength estimation are investigated. The temperature distribution and the structural capacity at the section are calculated in this step. An application of this method is compared with the heating test result and residual property test for simple supported beam which is subjected to ISO 834 test fire. The results of this study are as follows; 1) The loads-displacement relationship of RC beam, considering initial thermal stress of cross section and heat transfer analysis are estimated comparing analytical value with pre-existing experimental results. 2) by the heating time (0, 1, 2 hours), the results of analysis with parameters show that the load capacity exposing at fire is affected.

Methodology for investigating the behavior of reinforced concrete structures subjected to post earthquake fire

  • Behnam, Behrouz;Ronagh, Hamid R.;Baji, Hassan
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.29-44
    • /
    • 2013
  • Post earthquake fire (PEF) can lead to the collapse of buildings that are partially damaged in a prior ground-motion that occurred immediately before the fire. The majority of standards and codes for the design of structures against earthquake ignore the possibility of PEF and thus buildings designed with those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Life-Safety performance level of structures designed to the ACI 318-08 code after they are subjected to two different earthquake levels with PGA of 0.35 g and 0.25 g. This is followed by a four-hour fire analysis of the weakened structure, from which the time it takes for the weakened structure to collapse is calculated. As a benchmark, the fire analysis is also performed for undamaged structure and before occurrence of earthquake. The results show that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show the damaging effects of post earthquake fire are exacerbated when initiated from second and third floor. Whilst the investigation is for a certain class of structures (regular building, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post earthquake fire in the process of analysis and design and provides some quantitative measures on the level of associated effects.

Shear Strengthening by Externally Post-tensioning Steel Rods in Damaged Reinforced Concrete (RC) Beams (손상입은 철근콘크리트 보의 포스트텐셔닝 강봉을 이용한 전단 보강)

  • Lee, Swoo-Heon;Lee, Hee-Du;Park, Seong-Geun;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • This experimental investigation was conducted to observe the shear strengthening behavior of pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. A total of six simply supported beams - two control beams and four post-tensioned beams using external steel rods - were tested to failure in shear. The external steel rods of 18 mm or 28 mm diameter were respectively employed as post-tensioning material. The four post-tensioned beams have a V-shaped profile with a deviator (or saddle pin) located at mid-span, and the post-tensioning system increased the low load-carrying capacity and overcame a little bit of deflection caused by damage. Concretely, the load-carrying capacity and flexural stiffness were respectively increased by about 25~57% and 263~387% due to the post-tensioning when compared with the unstrengthened control beams.

Investigation of shear transfer mechanisms in repaired damaged concrete columns strengthened with RC jackets

  • Achillopoulou, D.V;Karabinis, A.I
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.575-598
    • /
    • 2013
  • The study presents the results of an experimental program concerning the shear force transfer between reinforced concrete (RC) jackets and existing columns with damages. In order to investigate the effectiveness of the repair method applied and the contribution of each shear transfer mechanism of the interface. It includes 22 concrete columns (core) (of 24,37MPa concrete strength) with square section (150mm side, 500 mm height and scale 1:2). Ten columns had initial construction damages and twelve were subjected to initial axial load. Sixteen columns have full jacketing at all four faces with 80mm thickness (of 31,7MPa concrete strength) and contain longitudinal bars (of 500MPa nominal strength) and closed stirrups spaced at 25mm, 50mm or 100mm (of 220MPa nominal strength). Fourteen of them contain dowels at the interface between old and new concrete. All columns were subjected to repeated (pseudo-seismic) axial compression with increasing deformation cycles up to failure with or without jacketing. Two load patterns were selected to examine the difference of the behavior of columns. The effects of the initial damages, of the reinforcement of the interface (dowels) and of the confinement generated by the stirrups are investigated through axial- deformation (slip) diagrams and the energy absorbed diagrams. The results indicate that the initial damages affect the total behavior of the column and the capacity of the interface to shear mechanisms and to slip: a) the maximum bearing load of old column is decreased affecting at the same time the loading capacity of the jacketed element, b) suitable repair of initially damaged specimens increases the capacity of the jacketed column to transfer load through the interface.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

Efficient repair of damaged FRP-reinforced geopolymeric columns using carbon fiber reinforced polymers

  • Mohamed Hechmi El Ouni;Ali Raza;Khawar Ali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Geopolymer concrete (GC) can be competently utilized as a practical replacement for cement to prevent a high carbon footprint and to give a direction toward sustainable concrete construction. Moreover, previous studies mostly focused on the axial response of glass fiber reinforced polymer (glass-FRP) concrete compressive elements without determining the effectiveness of repairing them after their partial damage. The goal of this study is to assess the structural effectiveness of partially damaged GC columns that have been restored using carbon fiber reinforced polymer (carbon-FRP). Bars made of glass-FRP and helix made of glass-FRP are used to reinforce these columns. For comparative study, six of the twelve circular specimens-each measuring 300 mm×1200 mm-are reinforced with steel bars, while the other four are axially strengthened using glass-FRP bars (referred to as GSG columns). The broken columns are repaired and strengthened using carbon-FRP sheets after the specimens have been subjected to concentric and eccentric compression until a 30% loss in axial strength is attained in the post-peak phase. The study investigates the effects of various variables on important response metrics like axial strength, axial deflection, load-deflection response, stiffness index, strength index, ductility index, and damage response. These variables include concentric and eccentric compression, helix pitch, steel bars, carbon-FRP wrapping, and glass-FRP bars. Both before and after the quick repair process, these metrics are evaluated. The results of the investigation show that the axial strengths of the reconstructed SSG and GSG columns are, respectively, 15.3% and 20.9% higher than those of their original counterparts. In addition, compared to their SSG counterparts, the repaired GSG samples exhibit an improvement in average ductility indices of 2.92% and a drop in average stiffness indices of 3.2%.