• Title/Summary/Keyword: damaged reinforced concrete

Search Result 321, Processing Time 0.026 seconds

A Study on Carbon Fiber Sheet Rehabilitation of Reinforced High Strength Concrete Beams (고강도 RC보의 탄소섬유쉬트 보강에 대한 연구)

  • 김종효;곽계환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.450-455
    • /
    • 1997
  • In recent years the research and development about the new material proceeds rapidly and actively in building industry. We are concerned with high-strength concrete as a new material. As the building structure becomes bigger, higher and more specialized, so does the demand of material and member with high strength for building expands greatly. In the future, we will quite need to research repair and rehabilitation to make high strength concrete structural building for our safe. So, I did an study on carbon fiber sheet rehabilitation(CFSR) of reinforced high strength concrete beams. The carbon fiber reinforced plastic(CFRP) bonding method is widely used for reinforcing the existing concrete structure among the various methods. The test results indicate that CFS is very effective for strengthening the damaged beams and controlling deflections of the repaired beams. When carbon fiber sheet rehabilitation of reinforced high strength concrete beams happened diagonal crack, the increase in the number of CFS layer didn't effect the increase in strength of beams. Also, by changing the CFS stick position gave diversified ultimate load in CFSR beams.

  • PDF

Studies on Repair of Reinforced Concrete Structures(II) - Their Influence on Flexural Performance - (철근콘크리트 구조물의 보수 공법연구(II) - 휨 거동 비교 -)

  • 김병국;신영수;홍기섭;이차돈;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.219-224
    • /
    • 1995
  • A series of 15 reinforced concrete beams was tested to explore the effects of polymer repair on damaged beams. The key parameters for this study were the repair materials, repair methods, repair depths and repair locations. The repaired specimens failed by a typical flexural mode, showing minor interface failure. The results show that epoxy, polyester resins and latex modified cementitous mortars are effective for repairing the concrete beams. The results also show that the depth and the location of the repair do not change significantly the flexural preformance of the repaired beams.

  • PDF

The Performance and Application of Carbon Fiber Sheet for the Repair and Reinforcement Material (보수.보강재로서의 탄소섬유시트 보강섬유의 활용기술)

  • Kwon, Young-Jin;Jang, Tea-Min;Kim, Chul-Ho;Park, Deuk-Kon;Choi, Long
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.418-421
    • /
    • 1996
  • Carbon Fiber Sheet is very attractive for the upgrading damaged reinforced concrete due to its good tensile strength, handabilbity and resistance to corrosion. This paper discusses the applicability of continous carbon fiber sheet for a reinforcement of existeing reinforced concrete structure located in Pusan. Examples of site data and actual concrete rehabilitation project at slab structure related to construction method used carbon fiber sheet will be given.

  • PDF

FRP Confinement of Heat-Damaged Circular RC Columns

  • Al-Nimry, Hanan Suliman;Ghanem, Aseel Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.115-133
    • /
    • 2017
  • To investigate the effectiveness of using fiber reinforced polymer (FRP) sheets in confining heat-damaged columns, 15 circular RC column specimens were tested under axial compression. The effects of heating duration, stiffness and thickness of the FRP wrapping sheets were examined. Two specimen groups, six each, were subjected to elevated temperatures of $500^{\circ}C$ for 2 and 3 h, respectively. Eight of the heat-damaged specimens were wrapped with unidirectional carbon and glass FRP sheets. Test results confirmed that elevated temperatures adversely affect the axial load resistance and stiffness of the columns while increasing their ductility and toughness. Full wrapping with FRP sheets increased the axial load capacity and toughness of the damaged columns. A single layer of the carbon sheets managed to restore the original axial resistance of the columns heated for 2 h yet, two layers were needed to restore the axial resistance of columns heated for 3 h. Glass FRP sheets were found to be less effective; using two layers of glass sheets managed to restore the axial load carrying capacity of columns heated for 2 h only. Confining the heat-damaged columns with FRP circumferential wraps failed in recovering the original axial stiffness of the columns. Test results confirmed that FRP-confining models adopted by international design guidelines should address the increased confinement efficiency in heat-damaged circular RC columns.

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • v.17 no.3
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

Experimental study and modelling of CFRP-confined damaged and undamaged square RC columns under cyclic loading

  • Su, Li;Li, Xiaoran;Wang, Yuanfeng
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.411-427
    • /
    • 2016
  • While the cyclic behaviour of fiber-reinforced polymer (FRP)-confined columns is studied rather extensively, the cyclic response especially the energy dissipation of FRP-confined damaged and undamaged square RC columns is not yet fully understood. In this paper, an experimental and numerical investigation was conducted to study the cyclic behavior of two different types of Carbon FRP (CFRP)-confined square RC columns: strengthened and repaired. The main variables investigated are initial damage, confinement of CFRP, longitudinal steel reinforcement ratio. The experimental results show that lower initial damage, added confinement with CFRP and longitudinal reinforcement enhance the ductility, energy dissipation capacity and strength of the columns, decrease the stiffness and strength degradation rates of all CFRP-confined square RC columns. Two hysteretic constitutive models were developed for confined damaged and undamaged concrete and cast into the non-linear beam-column fiber-based models in the software Open System for Earthquake Engineering Simulation (OpenSees) to analyze the cyclic behavior of CFRP-confined damaged and undamaged columns. The results of the numerical models are in good agreement with the experiments.

Post-earthquake fire performance-based behavior of reinforced concrete structures

  • Behnama, Behrouz;Ronagh, Hamid R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.379-394
    • /
    • 2013
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings damaged partially as a result of prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Immediate Occupancy, Life Safety and Collapse Prevention performance levels of structures, designed to the ACI 318-08 code, after they are subjected to an earthquake level with PGA of 0.35g. This investigation is followed by a fire analysis of the damaged structures, examining the time taken for the damaged structures to collapse. As a point of reference, a fire analysis is also performed for undamaged structures and before the occurrence of earthquake. The results indicate that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show that the damaging effects of post-earthquake fire are exacerbated when initiated from the second and third floor. Whilst the investigation is made for a certain class of structures (conventional buildings, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post-earthquake fire into the process of analysis and design, and provides some quantitative measures on the level of associated effects.

Seismic repair of captive-column damage with CFRPs in substandard RC frames

  • Tunaboyu, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • The effectiveness of the repair scheme for the damaged captive-columns with CFRPs (Carbon Fiber Reinforced Polymer) was investigated in terms of response quantities such as strength, ductility, dissipated energy and stiffness degradation. Two 1/3 scale, one-story one-bay RC (Reinforced Concrete) frames were designed to represent the substandard RC buildings in Turkish building stock. The first one, which is the reference specimen, is the bare frame without infill wall. Partial infill wall with opening was constructed between the columns of the second frame and this caused captive column defect. Severe damage was observed with the concentration of shear cracks in the second specimen columns. Then, the damaged members were repaired by CFRP wrapping and retested. For the three test series, similar reversed cyclic lateral displacement under combined effect of axial load was applied to the top of the columns. Overall response of the bare frame was dominated by flexural cracks. Brittle type of shear failure in the column top ends was observed in the specimen with partial infill wall. It was observed that former capacity of damaged members of the second frame was recovered by the applied repair scheme. Moreover, ultimate displacement capacity of the damaged frame was improved considerably by CFRP wrapping.

A Study on the Failure Behavior of Carbon Fiber Sheet Reinforced Mortar Using Acoustic Emission Technique (AE를 이용한 탄소섬유시트 강화 모르타르의 파괴거동에 관한 연구)

  • 이진경;이준현;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.67-75
    • /
    • 2000
  • It was well recognized that the damages associated mainly with the aging of civil infrastructures were one of very serious problems for assurance of safety and reliability. Recently carbon fiber sheet(CFS) has been widely used for reinforcement and rehabilitation of damaged concrete beam. However, the fundamental mechanism of load transfer and its load-resistant for carbon fiber sheet reinforced concrete are not fully understood. In this study, three point bending test has been carried out to understand the damage progress and the micro-failure mechanism of CFS reinforced mortars. For this purpose, four different types of specimens are used, that is, mortar, steel bar reinforced mortar, CFS reinforced mortar, and steel bar and CFS reinforced morter. Acoustic Emission(AE) technique was used to evaluate the characteristics of damage progress and the failure mechanism of specimens. in addition, two-dimensional AE source location was also performed to monitor crack initiation and propagation processes for these specimens.

Performance Assessment of Deteriorated Reinforced Concrete Bridge Columns (열화된 철근콘크리트 교각의 성능평가)

  • Kim, Tae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.45-54
    • /
    • 2011
  • This paper presents a nonlinear finite element analysis procedure for the performance assessment of deteriorated reinforced concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used to analyze these reinforced concrete structures. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. Advanced deteriorated material models are developed to predict behaviors of deteriorated reinforced concrete bridge columns. The proposed numerical method for the performance of damaged reinforced concrete bridge columns is verified by comparison with reliable experimental results.