• Title/Summary/Keyword: damaged reinforced concrete

Search Result 321, Processing Time 0.023 seconds

Nonlinear Seismic Analysis Method of Reinforced Concrete Buildings Including Their Pile Foundations (말뚝기초를 포함한 철근콘크리트 건물의 비선형 지진해석법에 관한 연구)

  • 이강석;이원호;류해상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.9-20
    • /
    • 2003
  • At present, the information on the foundation-structure interaction is lacking. As a result, the seismic performance evaluation of buildings seldom considers the effect of the foundation performance on the building responses. Recent earthquakes such as the 1993 Hokkaido Nansei-oki Earthquake(M=7.8), the 1994 Northridge Earthquake(M=6.7), the 1995 Hyogoken-Nambu Earthquake(M=7.2), and the 1999 Chi-Chi Earthquake (M=7.6) have shown that building damages are significantly affected by the degree of damage sustained by the building foundation and the interaction between the building and the foundation. This paper presents a nonlinear seismic analysis method for the seismic performance evaluation of reinforced concrete buildings which considers the pile foundation-structure interaction. The proposed method is applied to an actual building which was damaged during the 1993 Hokkaido Nansei-oki Earthquake. The result reveal that the method is able to predict the performance of the building.

Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Lee, Kang-Seok;Son, Young-Seon;Lee, Moon-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.421-431
    • /
    • 2007
  • The main purpose of this study is to develop a sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing one of the carbon or glass chopped fibers and one of the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of the sprayed FRP, this study carried out tensile tests of the material specimens, which were changed with the combinations of various variables including the length of chopped fiber and the mixture ratio of chopped fiber and resin. These variables were set to have the equal material strength, compared with that of one layer of the FRP sheet. As a result, the optimal length of glass and carbon chopped fibers was fumed out to be 38 mm, and the optimal mixture ratio between chopped fiber and resin was also turned out to be 1 : 2 from each variable. And also, the thickness of the sprayed FRP to have the equal strength to one layer of the FRP sheet was finally calculated. In is study, a series of experiments were carried out to evaluate the strengthening effects of flexural beams, shear beams and damaged beams strengthened with the sprayed FRP method, respectively. The results revealed that the strengthening effects of the flexural and shear specimens were reasonably similar to those of the FRP sheet, and the developed Sprayed FRP technique is able to be used as a strengthening scheme of existing RC building.

A Study on Cause Analysis and Countermeasures of Chloride Attack of Reinforced Earth Retaining Walls Installed on Bridge Abutment (염해로 인한 교대부 보강토옹벽 손상 원인 분석 연구)

  • Do, Jong-Nam;Kim, Nag-Young;Cho, Nam-Hun;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.59-64
    • /
    • 2018
  • The damages to the reinforced earth retaining wall are divided into the front wall, foundation, drainage and upper slope. Damage of reinforced earth retaining wall is mainly caused by damage caused by drainage problem in the field. Recently, damage caused by snow removal materials have been occurred. Recently, the amount of snow removal materials used in winter is increasing due to abnormal weather. This chlorides degrades the concrete structure, where the reinforced earth retaining wall was no exception. There has recently been a case in which the front wall of the reinforced earth retaining wall deteriorates due to the chlorides introduced into the back filling portion through the drainage passage. Therefore, in this study, the cause of damages of reinforced earth retaining wall constructed in bridge abutment was analyzed, and an analytical study was conducted on the countermeasure. As a result, it was found that chlorides, which was introduced through the drainage system in the expansion joint of the bridge shift part or the upper structure, is infiltrated into the back part of the reinforced earth retaining wall and damaged. Therefore, it is suggested to improve the drainage system and restored the stiffness of the front wall.

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup (강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

The Study on the Optimal NDT Method for the Explosion Damage Analysis for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 분석을 위한 최적의 비파괴검사법에 관한 연구)

  • Lee, Seoung-Jae;Oh, Tae-Keun;Park, Jong-Yil;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.62-68
    • /
    • 2017
  • It is necessary to analyze on the compressive strength among material properties of concrete for confirming damages of architectures due to large explosion. A non destructive test is known as the representative methods estimating compressive strength and ultrasonic pulse velocity, rebound hardness test are widely used because of their simplicity, convenience. But combined method supplementing two types is applied at now as they are affected by the characteristics of test specimen. In this research to check damages on the members of structure before and after explosion, the characteristics of compressive strength are compared and analyzed through a real explosion test prior to full scale structures. The test results showed that the larger the TNT powder and the shorter the distance, the greater the decrease in strength before and after the explosion and that the largest displacement and moment for the explosive load and the greatest decrease in the strength at the central part. Due to the surface condition and the thickness variation of the concrete specimens, the standard deviation value is the smallest in the combining method of fusion of the ultrasonic method and rebound hardness method. Thus, the combining method can be one of appropriate methods to evaluate the strength in the reinforced concrete structures damaged by the explosion.

Vibration Characteristics of a Building Before and After Damage by Actual Measurement (실측을 통한 건물의 손상 전.후 진동특성 평가)

  • Yoon, Sung-Won;Park, Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.445-453
    • /
    • 2010
  • Recently, the remodeling projects of old low-rise buildings were launched in Korea. However, most of them were not satisfied with the value set forth by the KBC2005. Even though there are some research studies on how to improve the seismic performance of such buildings as newly constructed buildings, there is little research in measuring the actual vibrations on low old buildings to prove the effect of retrofit. There also has not been any in-depth research on the dynamic characteristics of full-scale structures using vibration measurements of the building that was damaged to failure. Using an actuator, the dynamic characteristics of reinforced three-storey concrete buildings were evaluated before and after they were damaged. After an 80-mm horizontal displacement by the actuator, frequency in the long and short directions were reduced to 20.85% and 5.77% respectively ; damping ratio was also reduced to 53.9% and 23.15% respectively.

Observational failure analysis of precast buildings after the 2012 Emilia earthquakes

  • Minghini, Fabio;Ongaretto, Elena;Ligabue, Veronica;Savoia, Marco;Tullini, Nerio
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.327-346
    • /
    • 2016
  • The 2012 Emilia (Italy) earthquakes struck a highly industrialized area including several thousands of industrial prefabricated buildings. Due to the lack of specific design and detailing for earthquake resistance, precast reinforced concrete (RC) buildings suffered from severe damages and even partial or total collapses in many cases. The present study reports a data inventory of damages from field survey on prefabricated buildings. The damage database concerns more than 1400 buildings (about 30% of the total precast building stock in the struck region). Making use of the available shakemaps of the two mainshocks, damage distributions were related with distance from the nearest epicentre and corresponding Pseudo-Spectral Acceleration for a period of 1 second (PSA at 1 s) or Peak Ground Acceleration (PGA). It was found that about 90% of the severely damaged to collapsed buildings included into the database stay within 16 km from the epicentre and experienced a PSA larger than 0.12 g. Moreover, 90% of slightly to moderately damaged buildings are located at less than 25 km from the epicentre and were affected by a PSA larger than 0.06 g. Nevertheless, the undamaged buildings examined are almost uniformly distributed over the struck region and 10% of them suffered a PSA not lower than 0.19g. The damage distributions in terms of the maximum experienced PGA show a sudden increase for $PGA{\geq}0.28g$. In this PGA interval, 442 buildings were collected in the database; 55% of them suffered severe damages up to collapse, 32% reported slight to moderate damages, whereas the remaining 13% resulted undamaged.

Impact of initial damage path and spectral shape on aftershock collapse fragility of RC frames

  • Liu, Yang;Yu, Xiao-Hui;Lu, Da-Gang;Ma, Fu-Zi
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.529-540
    • /
    • 2018
  • The influences of initial damage paths and aftershock (AS) spectral shape on the assessment of AS collapse fragility are investigated. To do this, a four-story ductile reinforced concrete (RC) frame structure is employed as the study case. The far-field earthquake records recommended by FEMA P695 are used as AS ground motions. The AS incremental dynamic analyses are performed for the damaged structure. To examine the effect of initial damage paths, a total of six kinds of initial damage paths are adopted to simulate different initial damage states of the structure by pushover analysis and dynamic analysis. For the pushover-based initial damage paths, the structure is "pushed" using either uniform or triangle lateral load pattern to a specified damage state quantified by the maximum inter-story drift ratio. Among the dynamic initial damage paths, one single mainshock ground motion or a suite of mainshock ground motions are used in the incremental dynamic analyses to generate a specified initial damage state to the structure. The results show that the structure collapse capacity is reduced as the increase of initial damage, and the initial damage paths show a significant effect on the calculated collapse capacities of the damaged structure (especially at severe damage states). To account for the effect of AS spectral shape, the AS collapse fragility can be adjusted at different target values of ${\varepsilon}$ by using the linear correlation model between the collapse capacity (in term of spectral intensity) and the AS ${\varepsilon}$ values, and coefficients of this linear model is found to be associated with the initial damage states.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams

  • Li, Yong;Yu, Haifeng;Liang, Xiaoyong;Yu, Jianjun;Li, Pengcheng;Wang, Wei;Wang, Qizhi
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.293-303
    • /
    • 2022
  • In order to improve the seismic resilience of coupled wall structure, coupling beam with fuse has been developed to reduce the post-earthquake damage. However, the fuses often have a build-up I-shaped section and are relatively heavy to be replaced. Moreover, the fuse and the beam segments are usually connected by bolts and it is time-consuming to replace the damaged fuse. For reducing the repair time and cost, a novel quickly replaceable coupling beam with buckling-restrained energy dissipaters is developed. The fuse of the proposed coupling beam consists of two chord members and bar-typed energy dissipaters placed at the corners of the fuse. In this way, the weight of the energy dissipater can be greatly reduced. The energy dissipaters and the chords are connected with hinge and it is convenient to take down the damaged energy dissipater. The influence of ratio of the length of coupling beam to the length of fuse on the seismic performance of the structure is also studied. The seismic performance of the coupled wall system with the proposed coupling beam is compared with the system with reinforced concrete coupling beams. Results indicated that the weight and post-earthquake repair cost of the proposed fuse can be reduced compared with the typical I-shaped fuse. With the increase of the ratio of the beam length to the fuse length, the interstory drift of the structure is reduced while the residual fuse chord rotation is increased.