• 제목/요약/키워드: damage-sensitive

검색결과 529건 처리시간 0.02초

Damage detection of subway tunnel lining through statistical pattern recognition

  • Yu, Hong;Zhu, Hong P.;Weng, Shun;Gao, Fei;Luo, Hui;Ai, De M.
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.231-242
    • /
    • 2018
  • Subway tunnel structure has been rapidly developed in many cities for its strong transport capacity. The model-based damage detection of subway tunnel structure is usually difficult due to the complex modeling of soil-structure interaction, the indetermination of boundary and so on. This paper proposes a new data-based method for the damage detection of subway tunnel structure. The root mean square acceleration and cross correlation function are used to derive a statistical pattern recognition algorithm for damage detection. A damage sensitive feature is proposed based on the root mean square deviations of the cross correlation functions. X-bar control charts are utilized to monitor the variation of the damage sensitive features before and after damage. The proposed algorithm is validated by the experiment of a full-scale two-rings subway tunnel lining, and damages are simulated by loosening the connection bolts of the rings. The results verify that root mean square deviation is sensitive to bolt loosening in the tunnel lining and X-bar control charts are feasible to be used in damage detection. The proposed data-based damage detection method is applicable to the online structural health monitoring system of subway tunnel lining.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios

  • Lee, Soon Gie;Yun, Gun Jin
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.181-207
    • /
    • 2013
  • In this paper, a statistical reference-free real-time damage detection methodology is proposed for detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index (DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and determination of the level of decomposition was also described. Advantages of the proposed method for applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a shaker was used for experimental verification tests of the proposed methodology. The statistical reference-free real-time damage detection algorithm was successfully implemented and verified by detecting three damage types frequently observed in truss bridge structures - such as loss of bolts, loosening of bolts at multiple locations, sectional loss of members - without reference signals from pristine structure. The DSI based on WPD and the log likelihood ratio showed consistent and reliable results under different damage scenarios.

Real-time structural damage detection using wireless sensing and monitoring system

  • Lu, Kung-Chun;Loh, Chin-Hsiung;Yang, Yuan-Sen;Lynch, Jerome P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.759-777
    • /
    • 2008
  • A wireless sensing system is designed for application to structural monitoring and damage detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive features of a structure. To validate the performance of the proposed wireless monitoring and damage detection system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with the wireless monitoring system for real time damage detection during shaking table tests. White noise and seismic ground motion records are applied to the base of the structure using a shaking table. Pattern classification methods are then adopted to classify the structure as damaged or undamaged using time series coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison to data recorded using a traditional wired monitoring system.

Reduction of TNE ${\alpha}-induced$ Oxidative DNA Damage Product, 8-Hydroxy-2'-Deoxyguanosine, in L929 Cells Stably Transfected with Small Heat Shock Protein

  • Park, Young-Mee;Choi, Eun-Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권2호
    • /
    • pp.209-219
    • /
    • 1997
  • Previous studies have demonstrated that oxidative stress involving generation of reactive oxygen species (ROS) is responsible for the cytotoxic action of $TNF{\alpha}$. Protective effect of small heat shock proteins (small HSP) against diverse oxidative stress conditions has been suggeted. Although overexpression of small hsp was shown to provide an enhanced survival of $TNF{\alpha}$-sensitive cells when challenged with $TNF{\alpha}$, neither the nature of $TNF{\alpha}$-induced cytotoxicity nor the protective mechanism of small HSP has not been completely understood. In this study, we have attempted to determine whether $TNF{\alpha}$ induces oxidative DNA damage in $TNF{\alpha}$-sensitive L929 cells. We chose to measure the level of 8-hydroxy-2'-deoxyguanosine (8 ohdG), which has been increasingly recognized as one of the most sensitive markers of oxidative DNA damage. Our results clearly demonstrated that the level of 8 ohdG increased in L929 cells in a $TNF{\alpha}$ dose-dependent manner. Subsequently, we asked whether small HSP has a protective effect on $TNF{\alpha}$-induced oxidative DNA damage. To accomplish this goal, we have stably transfected L929 cells with mouse small hsp cDNA (hsp25) since these cells are devoid of endogenous small hsps. We found that $TNF{\alpha}$-induced 8 ohdG was decreased in cells overexpressing exogenous small hsp. We also found that the cell killing activity of $TNF{\alpha}$ was decreased in these cells as measured by clonogenic survival. Taken together, results from the current study show that cytotoxic mechanism of $TNF{\alpha}$ involves oxidative damage of DNA and that overexpression of the small hsp reduces this oxidative damage. We suggest that the reduction of oxidative DNA damage is one of the most important protective mechanisms of small HSP against $TNF{\alpha}$.

  • PDF

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations

  • Xu, Y.L.;Zhu, Hongping;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • 제18권6호
    • /
    • pp.709-729
    • /
    • 2004
  • This paper presents numerical and experimental investigations on damage detection of mono-coupled multistory buildings using natural frequency as only diagnostic parameter. Frequency equation of a mono-coupled multistory building is first derived using the transfer matrix method. Closed-form sensitivity equation is established to relate the relative change in the stiffness of each story to the relative changes in the natural frequencies of the building. Damage detection is then performed using the sensitivity equation with its special features and minimizing the norm of an objective function with an inequality constraint. Numerical and experimental investigations are finally conducted on a mono-coupled 3-story building model as an application of the proposed algorithm, in which the influence of modeling error on the degree of accuracy of damage detection is discussed. A mono-coupled 10-story building is further used to examine the capability of the proposed algorithm against measurement noise and incomplete measured natural frequencies. The results obtained demonstrate that changes in story stiffness can be satisfactorily detected, located, and quantified if all sensitive natural frequencies to damaged stories are available. The proposed damage detection algorithm is not sensitive to measurement noise and modeling error.

EVALUATION OF HAIR DAMAGE BASED ON MEASUREMENTS OF LABILE PROTEIN

  • Inoue, Takafumi;Ito, Mayumi;Kizawa, Kenji;Iwamoto, Yoshimichi
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.142-160
    • /
    • 2003
  • Most consumers have noted hair damage following coloring treatments. Proper evaluation of hair bleaching products must be performed using quantitative assessments of hair damage, though they are difficult, because of the slight fluctuations in hair composition. In the present study, we utilized a sensitive evaluation method for hair damage and found that the amount of soluble protein fraction extracted from hair under a reducing condition, termed labile protein, dramatically increased after bleaching.(omitted)

  • PDF

Reduced wavelet component energy-based approach for damage detection of jacket type offshore platform

  • Shahverdi, Sajad;Lotfollahi-Yaghin, Mohammad Ali;Asgarian, Behrouz
    • Smart Structures and Systems
    • /
    • 제11권6호
    • /
    • pp.589-604
    • /
    • 2013
  • Identification of damage has become an evolving area of research over the last few decades with increasing the need of online health monitoring of the large structures. The visual damage detection can be impractical, expensive and ineffective in case of large structures, e.g., offshore platforms, offshore pipelines, multi-storied buildings and bridges. Damage in a system causes a change in the dynamic properties of the system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such good sensitive indication of structural damage. Identification of damaged jacket type offshore platform members, based on wavelet packet transform is presented in this paper. The jacket platform is excited by simple wave load. Response of actual jacket needs to be measured. Dynamic signals are measured by finite element analysis result. It is assumed that this is actual response of the platform measured in the field. The dynamic signals first decomposed into wavelet packet components. Then eliminating some of the component signals (eliminate approximation component of wavelet packet decomposition), component energies of remained signal (detail components) are calculated and used for damage assessment. This method is called Detail Signal Energy Rate Index (DSERI). The results show that reduced wavelet packet component energies are good candidate indices which are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and are applicable for finding damages' location.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • 제2권3호
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.