• Title/Summary/Keyword: damage plate

Search Result 570, Processing Time 0.02 seconds

An Experimental Study on the Stiffness Change of Scaffold Working Plate caused by Damage of Cross-beam (보재의 손상에 따른 비계용 작업발판의 강성 변화에 대한 실험적 연구)

  • Sung, Yong-won;Kang Min-guk;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.27-35
    • /
    • 2021
  • This study investigated the change in stiffness and deflection of a scaffold working plate caused by damage to a cross-beam in the plate. Experiments were conducted considering various load and damage conditions of cross-beams. A cross-beam falling off from the working plate was considered damaged. The load-displacement curves of specimens at the center of the uniform load showed that the working plate stiffness decreased by 14.66%-1.89%, depending on the load interval due to the damage of one cross-beam. A reduction in the stiffness of 33.94%-40.76% resulted from the damage of two cross-beams. Moreover, the displacement increased by an average of 25% when one cross-beam was damaged and an average of 65% when two cross-beams were damaged. Therefore, damage to the cross-beam in the working plate can potentially cause accidents and harm workers. As the load increases, the risk of an accident due to the aforementioned damage also increases because the stiffness remarkably decreases with the load increase. Further, the damage to the cross-beam mainly reduces the stiffness but increases the displacement rather than the strength of the working scaffold plate.

Performance evaluation of wavelet and curvelet transforms based-damage detection of defect types in plate structures

  • Hajizadeh, Ali R.;Salajegheh, Javad;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.667-691
    • /
    • 2016
  • This study focuses on the damage detection of defect types in plate structures based on wavelet transform (WT) and curvelet transform (CT). In particular, for damage detection of structures these transforms have been developed since the last few years. In recent years, the CT approach has been also introduced in an attempt to overcome inherent limitations of traditional multi-scale representations such as wavelets. In this study, the performance of CT is compared with WT in order to demonstrate the capability of WT and CT in detection of defect types in plate structures. To achieve this purpose, the damage detection of defect types through defect shape in rectangular plate is investigated. By using the first mode shape of plate structure and the distribution of the coefficients of the transforms, the damage existence, the defect location and the approximate shape of defect are detected. Moreover, the accuracy and performance generality of the transforms are verified through using experimental modal data of a plate.

Damage detection of a thin plate using pseudo local flexibility method

  • Hsu, Ting Yu;Liu, Chao Lun
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.463-471
    • /
    • 2018
  • The virtual forces of the original local flexibility method are restricted to inducing stress on the local parts of a structure. To circumvent this restriction, we developed a pseudo local flexibility (PLFM) method that can successfully detect damage to hyperstatic beam structures using fewer modes. For this study, we further developed the PLFM so that it could detect damage in plate structures. We also devised the theoretical background for the PLFM with non-local virtual forces for plate structures, and both the lateral and rotary degree of freedom (DOF) measurements were considered separately. This study investigates the effects of the number of modes, the actual location that sustained damage, multiple damage locations, and noise in modal parameters for the damage detection results obtained from damaged numerical plates. The results revealed that the PLFM can be used for damage detection, localization, and quantification for plate structures, regardless of the use of the lateral DOF and/or rotary DOF.

Static and Dynamic Instability Characteristics of Thin Plate like Beam with Internal Flaw Subjected to In-plane Harmonic Load

  • R, Rahul.;Datta, P.K.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2013
  • This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.

Structural damage identification of plates based on modal data using 2D discrete wavelet transform

  • Bagheri, A.;Ghodrati Amiri, G.;Khorasani, M.;Bakhshi, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.13-28
    • /
    • 2011
  • An effective method for detection linear flaws in plate structures via two-dimensional discrete wavelet transform is proposed in this study. The proposed method was applied to a four-fixed supported rectangular plate containing damage with arbitrary length, depth and location. Numerical results identifying the damage location are compared with the actual results to demonstrate the effectiveness of the proposed method. Also, a wavelet-based method presented for de-noising of mode shape of plate. Finally, the performance of the proposed method for de-noising and damage identification was verified using experimental data. Comparison between the location detected by the proposed method, and the plate's actual damage location revealed that the methodology can be used as an accessible and effective technique for damage identification of actual plate structures.

Identification of Damages within a Plate Structure (평판 구조물의 손상규명)

  • Kim, Nam-In;Lee, U-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.671-675
    • /
    • 2000
  • In this study, an FRF-based structural damage identification method (SDIM) is proposed for plate structures. The present SDIM is derived from the partial differential equation of motion of the damaged plate, in which damage is characterized by damage distribution function. Various factors that might affect the accuracy of the damage identification are investigated. They include the number of modal data used in the analysis and the damage-induced modal coupling. In the present SDIM, an efficient iterative damage self-search method is introduced. The iterative damage search method efficiently reduces the size of problem by searching out and then by removing all damage-free zones at each iteration of damage identification analysis. The feasibility of the present SDIM is studied by some numerically simulated tests.

  • PDF

Damage Detection of Plate Using Long Continuous Sensor and Wave Propagation (연속형 센서와 웨이브 전파를 이용한 판 구조물의 손상감지)

  • Lee, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.272-278
    • /
    • 2010
  • A method for damage detection in a plate structure is presented based on strain waves that are generated by impact or damage in the structure. Strain responses from continuous sensors, which are long ribbon-like sensors made from piezoceramic fibers or other materials, were used with a neural network technique to estimate the damage location. The continuous sensor uses only a small number of channels of data acquisition and can cover large areas of the structure. A grid type structural neural system composed of the continuous sensors was developed for effective damage localization in a plate structure. The ratios of maximum strains and arrival times of the maximum strains obtained from the continuous sensors were used as input data to a neural network. Simulated damage localizations on a plate were carried out and the identified damage locations agreed reasonably well with the exact damage locations.

Hybrid damage monitoring of steel plate-girder bridge under train-induced excitation by parallel acceleration-impedance approach

  • Hong, D.S.;Jung, H.J.;Kim, J.T.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.719-743
    • /
    • 2011
  • A hybrid damage monitoring scheme using parallel acceleration-impedance approaches is proposed to detect girder damage and support damage in steel plate-girder bridges which are under ambient train-induced excitations. The hybrid scheme consists of three phases: global and local damage monitoring in parallel manner, damage occurrence alarming and local damage identification, and detailed damage estimation. In the first phase, damage occurrence in a structure is globally monitored by changes in vibration features and, at the same moment, damage occurrence in local critical members is monitored by changes in impedance features. In the second phase, the occurrence of damage is alarmed and the type of damage is locally identified by recognizing patterns of vibration and impedance features. In the final phase, the location and severity of the locally identified damage are estimated by using modal strain energy-based damage index methods. The feasibility of the proposed scheme is evaluated on a steel plate-girder bridge model which was experimentally tested under model train-induced excitations. Acceleration responses and electro-mechanical impedance signatures were measured for several damage scenarios of girder damage and support damage.

Damage Detection in Cracked Model Plate-Girder using Damage Index Method and System Identification Technique (손상지수법과 구조식별(SID) 기법을 통한 균열된 강판형 모형의 손상검색)

  • 백종훈;류연선;김정태;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.109-116
    • /
    • 2001
  • An integrated damage identification system (IDIS) and system identification (SID) technique using modal information to detect damage in structures is presented. The objective is to detect damages in cracked model plate-girder without baseline modal parameters. The theory of damage localization and system identification is outlined. Experiments on a model plate-girder was described and a baseline model representing the experimental modal characteristics of the model plate-girder is updated using the system identification technique. Finally, damage inflicted in the model plate-girder is predicted using the IDIS software.

  • PDF

Hybrid Damage Monitoring Technique for Plate Girder Bridges using Acceleration-Impedance Signatures (판형교의 가속도-임피던스 신호를 이용한 하이브리드 손상 모니터링 기법)

  • Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Kim, Jeong-Tae;Park, Gyu-Hae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.197-202
    • /
    • 2008
  • In this paper, a hybrid vibration-impedance approaches is newly proposed to detect the occurrence of damage, the location of damage, and extent of damage in steel plate-girder bridges. The hybrid scheme mainly consists of three sequential phases: 1) to alarm the occurrence of damage, 2) to classify the alarmed damage, and 3) to estimate the classified damage in detail. Damage types of interest include flexural stiffness-loss in girder and bolts-loose in supports. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation method. The feasibility of the proposed system is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid vibration-impedance signatures were measured for several damage scenarios.

  • PDF