• Title/Summary/Keyword: damage information

Search Result 3,051, Processing Time 0.032 seconds

Detection Models and Response Techniques of Fake Advertising Phishing Websites (가짜 광고성 피싱 사이트 탐지 모델 및 대응 기술)

  • Eunbeen Lee;Jeongeun Cho;Wonhyung Park
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.29-36
    • /
    • 2023
  • With the recent surge in exposure to fake advertising phishing sites in search engines, the damage caused by poor search quality and personal information leakage is increasing. In particular, the seriousness of the problem is worsening faster as the possibility of automating the creation of advertising phishing sites through tools such as ChatGPT increases. In this paper, the source code of fake advertising phishing sites was statically analyzed to derive structural commonalities, and among them, a detection crawler that filters sites step by step based on foreign domains and redirection was developed to confirm that fake advertising posts were finally detected. In addition, we demonstrate the need for new guide lines by verifying that the redirection page of fake advertising sites is divided into three types and returns different sites according to each situation. Furthermore, we propose new detection guidelines for fake advertising phishing sites that cannot be detected by existing detection methods.

Life-Road : Development of an Emergency Evacuation Application using Augmented Reality and Beacon (Life-Road : 증강현실과 비콘을 사용하는 긴급대피용 애플리케이션 개발)

  • Myeon-gyun Cho
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.11-15
    • /
    • 2023
  • Recently, a fire suddenly broke out in a crowded theater, and many people were unable to find an escape route, becoming entangled, injured, and suffocating from smoke inhalation, resulting in a large-scale fire accident. Even though most of the people were young, they were unable to evacuate. If they had been elderly, it could have resulted in greater casualties. In particular, since it is difficult to receive accurate location information from GPS indoor, there is an urgent need for location-based services using beacons and an emergency evacuation system that intuitively shows evacuation routes in augmented reality using smart-phones. In this paper, an augmented reality-based emergency evacuation smartphone app was developed based on identifying fire locations and evacuation routes using beacons and fire sensors (IoT). In the future, if the proposed system is applied to indoor spaces where people are crowded, rapid evacuation will be possible even in a sudden fire accident, minimizing human damage.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system

  • Chaewon Kang;Kyungik Gil
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.155-162
    • /
    • 2023
  • Global climate change and urbanization have various demerits, such as water pollution, flood damage, and deterioration of water circulation. Thus, attention is drawn to Nature-based Solution (NbS) that solve environmental problems in ways that imitate nature. Among the NbS, urban wetlands are facilities that perform functions, such as removing pollutants from a city, improving water circulation, and providing ecological habitats, by strengthening original natural wetland pillars. Frequent monitoring and maintenance are essential for urban wetlands to maintain their performance; therefore, there is a need to apply the Internet of Things (IoT) technology to wetland monitoring. Therefore, in this study, we attempted to develop a real-time wetland monitoring device and interface. Temperature, water temperature, humidity, soil humidity, PM1, PM2.5, and PM10 were measured, and the measurements were taken at 10-minute intervals for three days in both indoor and wetland. Sensors suitable for conditions that needed to be measured and an Arduino MEGA 2560 were connected to enable sensing, and communication modules were connected to transmit data to real-time databases. The transmitted data were displayed on a developed web page. The data measured to verify the monitoring device were compared with data from the Korea meteorological administration and the Korea environment corporation, and the output and upward or downward trend were similar. Moreover, findings from a related patent search indicated that there are a minimal number of instances where information and communication technology (ICT) has been applied in wetland contexts. Hence, it is essential to consider further research, development, and implementation of ICT to address this gap. The results of this study could be the basis for time-series data analysis research using automation, machine learning, or deep learning in urban wetland maintenance.

A Study on Extracting Boundary Data of Marine Fish Farms Based on Satellite Images (위성영상 기반 해양수산 양식장의 경계 데이터 추출)

  • Seong-hoon Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.877-883
    • /
    • 2023
  • For safe operation of ships and management of marine fisheries farms, the data set that extracts the boundaries of marine fisheries farms can provide information on obstacles in the vessel's navigation path in advance by examining whether it matches the fishing ground permit area. In addition, it can be used to determine whether fish farms are operating to compensate for damage caused by marine accidents, and the relevant local government can use it to manage fishing grounds. It is also highly utilized as basic data to identify obstacles for safe navigation of ships. In this study, Sentinel-2 satellite image data from the European Space Agency (ESA) was used to extract the boundaries of fish farms. From the video image, the fish farm's status data by cycle was divided into five zones: Busan-Ulsan area, Geoje-Changwon area, Goseong-Tongyeong area, and Namhae-Sacheon area. Through the image highlighting process, the farm boundary data and meta data were processed and extracted.

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

Research Trend Analysis of Risk Cost Model for UAM Flight Path Planning (UAM 비행 경로 계획을 위한 위험 비용 모델 연구 동향 분석)

  • Jae-Hyeon Kim;Dong-Min Lee;Myeong-Jin Lee;Yeong-Hoon Choi;Ji-Hun Kwon;Jong-Whoa Na
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.68-76
    • /
    • 2024
  • With the recent rapid growth of the domestic and international unmanned aerial vehicle (UAV) market and the increasing importance of UAV operations in urban centers, such as UAMs, the safety management and regulatory framework for human life and property damage caused by UAV failures has been emphasized. In this study, we conducted a comparative analysis of risk-cost models that evaluate the risk of an operating area for safe UAM flight path planning, and identified the main limitations of each model to derive considerations for future model development. By providing a basic model for improving the safety of UAM operations, this study is expected to make an important contribution to technical improvements and policy decisions in the field of UAM flight path planning.

Generative AI Jeonse Fraud Prevention System (생성형 인공지능 전세 사기 방지 시스템)

  • Yeon-Jae Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.173-180
    • /
    • 2024
  • Along with its importance, the real estate market poses risks of various fraudulent activities. Recently, a surge in real estate-related scams, such as lease fraud, has caused great financial damage to many ordinary people. These problems are often caused by the complexity of real estate transactions and information imbalance. Therefore, there is an urgent need to secure reliability and improve transparency in the transaction process. In this paper, to solve this real estate fraud problem, we propose a chatbot system using digital technology and artificial intelligence, especially GPT (Generative Pre-Trained Transformer). This system serves to protect users from fraud by providing them with precautions and confirmations in the lease transaction process. In addition, GPT-based chatbots respond to questions from users in time, contributing to reducing uncertainty in the transaction process and increasing reliability.

Analysis of University Cafeteria Safety Based on Pathfinder Simulation

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.209-217
    • /
    • 2024
  • Recent years have seen a notable increase in fire incidents in university cafeterias, yet the social attention to these occurrences remains limited. Despite quick responses to these incidents preventing loss of life, the need for large-scale evacuation in such high foot traffic areas can cause significant disruptions, economic losses, and panic among students. The potential for stampedes and unpredictable damage during inadequate evacuations underscores the importance of fire safety and evacuation research in these settings. Previous studies have explored evacuation models in various university environments, emphasizing the influence of environmental conditions, personal characteristics, and behavioral patterns on evacuation efficiency. However, research specifically focusing on university cafeterias is scarce. This paper addresses this gap by employing Pathfinder software to analyze fire spread and evacuation safety in a university cafeteria. Pathfinder, an advanced emergency evacuation assessment system, offers realistic 3D simulations, crucial for intuitive and scientific evacuation analysis. The studied cafeteria, encompassing three floors and various functional areas, often exceeds a capacity of 1500 people, primarily students, during peak times. The study includes constructing a model of the cafeteria in Pathfinder and analyzing evacuation scenarios under different fire outbreak conditions on each floor. The paper sets standard safe evacuation criteria (ASET > RSET) and formulates three distinct evacuation scenarios, considering different fire outbreak locations and initial evacuation times on each floor. The simulation results reveal the impact of the fire's location and the evacuation preparation time on the overall evacuation process, highlighting that fires on higher floors or longer evacuation preparation times tend to reduce overall evacuation time.In conclusion, the study emphasizes a multifaceted approach to improve evacuation safety and efficiency in educational settings. Recommendations include expanding staircase widths, optimizing evacuation routes, conducting regular drills, strengthening command during evacuations, and upgrading emergency facilities. The use of information and communication technology for managing emergencies is also suggested. These measures collectively form a comprehensive framework for ensuring safety in educational institutions during fire emergencies.