• Title/Summary/Keyword: damage effects assessment

Search Result 257, Processing Time 0.03 seconds

Deep Excavation-induced Building and Utility Damage Assessment (도심지 깊은굴착시 주변 건물 및 매설관 손상평가)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.85-95
    • /
    • 2002
  • A substantial portion of the cost of deep excavations in urban environments is devoted to prevent ground movements and their effects on adjacent buildings and utilites. Prediction of ground movements and assessment of the risk of damage to adjacent structures has become an essential part of the planning, design, and construction of a deep excavation project in the urban environments. This paper presents damage assessment techniques for buildings and utilities adjacent deep excavation, which can be readily used in practice.

  • PDF

Damage assessment of reinforced concrete beams including the load environment

  • Zhu, X.Q.;Law, S.S.;Hao, H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.765-779
    • /
    • 2009
  • Quantitative condition assessment of structures has been traditionally using proof load test leading to an indication of the load-carrying capacity. Alternative approaches using ultrasonic, dynamics etc. are based on the unloaded state of the structure and anomalies may not be fully mobilized in the load resisting path and thus their effects are not fully included in the measured responses. This paper studies the effect of the load carried by a reinforced concrete beam on the assessment result of the crack damage. This assessment can only be performed with an approach based on static measurement. The crack damage is modelled as a crack zone over an area of high tensile stress of the member, and it is represented by a damage function for the simulation study. An existing nonlinear optimization algorithm is adopted. The identified damage extent from a selected high level load and a low load level are compared, and it is concluded that accurate assessment can only be obtained at a load level close to the one that creates the damage.

Safety Assessment and Capacity Rating of Existing P.C, Bridges based on Reliability Methods (신뢰성 방법에 기초한 기설 P.C교의 안전도 및 내하력 평가)

  • 조효남;김민영;서종원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.45-50
    • /
    • 1990
  • This study develops practical models and methods for the assessment of safety and capacity rating of existing P.C. girder bridges based on the reliability methods. One of the main objectives of the study is to propose a practical but realistic limit state model for safety assessment and LRFR rating criteria, which explicitly incorporates the degree of deterioration and damage as well as actual condition of P.C. girder bridges in terms of the damage factor and the response ratio. The damage factor proposed in the paper is defined as the ratio of the current estimated stiffness to the intact base-line stiffness of a member. Based on the observation and the results of applications to existing bridges, it may be concluded that the proposed methods for the assessment and capacity rating models, which explicitly account for the uncertainties and effects of degree of deterioration or damage, provide more realistic and consistent safety-assessment and capacity rating.

  • PDF

Damage Assessment of Structures Using Taguchi Method (다구찌 방법을 사용한 구조물의 손상 평가)

  • Kwon, Kye-Si
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.720-728
    • /
    • 2006
  • A robust damage assessment technique is presented such that the location and severity of damage in structures can be identified using measured modal data. In order to identify the damage efficiently, the concept of design of experiment using orthogonal array is used for screening the main effects of each parameter which corresponds to possible damage location in FE model. Then, Taguchi method, which has been widely used for robust design in industry, is applied to parameter updating in analytical FE model. The numerical simulations of a truss structure show that damages in structure can be located from updated parameters.

A Seasonal Risk Analysis and Damage Effects Assessment by Gas Leakage of Chemical Plant using 3D Scan and FLACS (3D 스캔과 FLACS를 활용한 화학플랜트 가스 누출의 계절별 위험성 및 피해영향 평가)

  • Kim, Jiyoung;Kim, Jiyu;Kim, Euisoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The process and facilities of modern chemical plants are becoming increasingly complex, there is possibility of potential risk. Internal chemicals generate stress concentration when operated due to turbulence, laminar flow, pressure, temperature, friction, etc. It causes cumulative fatigue damage, which can damage or rupture chemical facilities and devices. The statistics of chemical accidents found that the highest rate of occurrence was in summer, and in the last five years statistics on chemical accidents, leakage incidents make up a decent percentage of accidents. Chemical leaks can cause serious human damage and economic damage, including explosions and environmental pollution. In this study, based on the leak accident of chemical plant, the risk analysis, and damage effects assessment were estimated using a 3D scanner and FLACS. As a result, if chemicals leak in summer, the risk is higher than in other seasons, the seasonal safety management measures, and countermeasure were estimated.

Damage assessment of shear-type structures under varying mass effects

  • Do, Ngoan T.;Mei, Qipei;Gul, Mustafa
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.237-254
    • /
    • 2019
  • This paper presents an improved time series based damage detection approach with experimental verifications for detection, localization, and quantification of damage in shear-type structures under varying mass effects using output-only vibration data. The proposed method can be very effective for automated monitoring of buildings to develop proactive maintenance strategies. In this method, Auto-Regressive Moving Average models with eXogenous inputs (ARMAX) are built to represent the dynamic relationship of different sensor clusters. The damage features are extracted based on the relative difference of the ARMAX model coefficients to identify the existence, location and severity of damage of stiffness and mass separately. The results from a laboratory-scale shear type structure show that different damage scenarios are revealed successfully using the approach. At the end of this paper, the methodology limitations are also discussed, especially when simultaneous occurrence of mass and stiffness damage at multiple locations.

A RELIABILITY-BASED CAPACITY RATING OF EXISTING BRIDGES BY INCORPORATING SYSTEM IDENTIFICATION (동특성 추정 기법과 신뢰성 해법에 의한 기설교량의 내하력 판정 방법)

  • Cho, Hyo-Nam;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.37-43
    • /
    • 1990
  • This paper develops practical models and methods for the assessment of safety and rating of damaged and/or deteriorated bridges by incorporating a system identification technique for the explicit inclusion of the degree of deterioration or damage and of the actual bridge response. And, based on the proposed model, reliability-based rating methods are proposed as LRFR(Load and Resistance Factor Rating) and system reliability-index rating criteria. The proposed limit state model explicitly accounts for the degree of deterioration or damage in terms of the damage and response factors. The damage factor in the paper is proposed as the ratio of the current stiffness to the intact stiffness. Based on the observation and the results of applications to existing bridges, it may be concluded that the proposed rating models, which explicitly account for the uncertainties and the effects of degree of deterioration or damage based on the system identification technique, provide more realistic and consistent safety-assessment and capacity-rating.

  • PDF

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.

A Damage Assessment Technique for Bridges Using Static Displacements (정적변위를 이용한 교량의 손상도 평가기법)

  • Choi, Il Yoon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.641-646
    • /
    • 2002
  • A new damage detection technique using static displacement data was developed, in order to assess the structural integrity of bridge structures. In conventional damage assessment techniques using dynamic response, the variation of natural frequencies is intrinsically insensitive to the damage of the bridge: thus, it is usually difficult to obtain them from the measured data. The proposed detection method enables the estimation of the stiffness reduction of bridges using the static displacement data that are measured periodically, without requiring a specific loading test. Devices such as a laser displacement sensor can be used to measure static displacement data due to the dead load of the bridge structure. In this study, structural damage was represented by the reduction in the elastic modulus of the element. The damage factor of the element was introduced to estimate the stiffness reduction of the bridge under consideration. Likewise, the proposed algorithm was verified using various numerical simulations and compared with other damage detection methods. The effects of noise and number of damaged elements on damage detection were also investigated. Results showed that the proposed algorithm efficiently detects damage on the bridge.