• 제목/요약/키워드: damage detection algorithm

검색결과 313건 처리시간 0.024초

Vibration-based damage detection in beams using genetic algorithm

  • Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.263-280
    • /
    • 2007
  • In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.

Statistics based localized damage detection using vibration response

  • Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.85-104
    • /
    • 2014
  • Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Detection and quantification of structural damage under ambient vibration environment

  • Yun, Gun Jin
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.425-448
    • /
    • 2012
  • In this paper, a new damage detection and quantification method has been presented to perform detection and quantification of structural damage under ambient vibration loadings. To extract modal properties of the structural system under ambient excitation, natural excitation technique (NExT) and eigensystem realization algorithm (ERA) are employed. Sensitivity matrices of the dynamic residual force vector have been derived and used in the parameter subset selection method to identify multiple damaged locations. In the sequel, the steady state genetic algorithm (SSGA) is used to determine quantified levels of the identified damage by minimizing errors in the modal flexibility matrix. In this study, performance of the proposed damage detection and quantification methodology is evaluated using a finite element model of a truss structure with considerations of possible experimental errors and noises. A series of numerical examples with five different damage scenarios including a challengingly small damage level demonstrates that the proposed methodology can efficaciously detect and quantify damage under noisy ambient vibrations.

교량케이블 영상기반 손상탐지 (A Vision-based Damage Detection for Bridge Cables)

  • ;이종재
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

Structural damage detection using a multi-stage improved differential evolution algorithm (Numerical and experimental)

  • Seyedpoor, Seyed Mohammad;Norouzi, Eshagh;Ghasemi, Sara
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.235-248
    • /
    • 2018
  • An efficient method utilizing the multi-stage improved differential evolution algorithm (MSIDEA) as an optimization solver is presented here to detect the multiple-damage of structural systems. Natural frequency changes of a structure are considered as a criterion for damage occurrence. The structural damage detection problem is first transmuted into a standard optimization problem dealing with continuous variables, and then the MSIDEA is utilized to solve the optimization problem for finding the site and severity of structural damage. In order to assess the performance of the proposed method for damage identification, an experimental study and two numerical examples with considering measurement noise are considered. All the results demonstrate the effectiveness of the proposed method for accurately determining the site and severity of multiple-damage. Also, the performance of the MSIDEA for damage detection compared to the standard differential evolution algorithm (DEA) is confirmed by test examples.

Numerical evaluation for vibration-based damage detection in wind turbine tower structure

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.657-675
    • /
    • 2015
  • In this study, the feasibility of vibration-based damage detection methods for the wind turbine tower (WTT) structure is evaluated. First, a frequency-based damage detection (FBDD) is outlined. A damage-localization algorithm is visited to locate damage from changes in natural frequencies. Second, a mode-shape-based damage detection (MBDD) method is outlined. A damage index algorithm is utilized to localize damage from estimating changes in modal strain energies. Third, a finite element (FE) model based on a real WTT is established by using commercial software, Midas FEA. Several damage scenarios are numerically simulated in the FE model of the WTT. Finally, both FBDD and MBDD methods are employed to identify the damage scenarios simulated in the WTT. Damage regions are chosen close to the bolt connection of WTT segments; from there, the stiffness of damage elements are reduced.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

가속도를 이용한 인공신경망 기반 실시간 손상검색기법 (ANN-based Real-Time Damage Detection Algorithm using Output-only Acceleration Signals)

  • 김정태;박재형;도한성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.43-48
    • /
    • 2007
  • In this study, an ANN-based damage detection algorithm using acceleration signals is developed for alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed for damage detection in real time. The cross-covariance of two acceleration signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

  • PDF

Probabilistic structural damage detection approaches based on structural dynamic response moments

  • Lei, Ying;Yang, Ning;Xia, Dandan
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.207-217
    • /
    • 2017
  • Because of the inevitable uncertainties such as structural parameters, external excitations and measurement noises, the effects of uncertainties should be taken into consideration in structural damage detection. In this paper, two probabilistic structural damage detection approaches are proposed to account for the underlying uncertainties in structural parameters and external excitation. The first approach adopts the statistical moment-based structural damage detection (SMBDD) algorithm together with the sensitivity analysis of the damage vector to the uncertain parameters. The approach takes the advantage of the strength SMBDD, so it is robust to measurement noise. However, it requests the number of measured responses is not less than that of unknown structural parameters. To reduce the number of measurements requested by the SMBDD algorithm, another probabilistic structural damage detection approach is proposed. It is based on the integration of structural damage detection using temporal moments in each time segment of measured response time history with the sensitivity analysis of the damage vector to the uncertain parameters. In both approaches, probability distribution of damage vector is estimated from those of uncertain parameters based on stochastic finite element model updating and probabilistic propagation. By comparing the two probability distribution characteristics for the undamaged and damaged models, probability of damage existence and damage extent at structural element level can be detected. Some numerical examples are used to demonstrate the performances of the two proposed approaches, respectively.