• 제목/요약/키워드: damage condition

검색결과 2,010건 처리시간 0.025초

신경망과 절삭력을 이용한 공구이상상태감지에 관한 연구. (A Study on Cutting Toll Damage Detection using Neural Network and Cutting Force Signal)

  • 임근영;문상돈;김성일;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.982-986
    • /
    • 1997
  • A method using cutting force signal and neural network for detection tool damage is proposed. Cutting force signal is gained by tool dynamometer and the signal is prepocessed to normalize. Cutting force signal is changed by tool state. When tool damage is occurred, cutting force signal goes up in comparison with that in normal state. However,the signal goes down in case of catastrophic fracture. These features are memorized in neural network through nomalizing couse. A new nomalizing method is introduced in this paper. Fist, cutting forces are sumed up except data smaller than threshold value, which is the cutting force during non-cutting action. After then, the average value is found by dividing by the number of data. With backpropagation training process, the neural network memorizes the feature difference of cutting force signal between with and without tool damage. As a result, the cutting force can be used in monitoring the condition of cutting tool and neural network can be used to classify the cutting force signal with and without tool damage.

  • PDF

Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection

  • Ryu, Joo-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제4권3호
    • /
    • pp.237-253
    • /
    • 2017
  • Among various structural health monitoring technologies, impedance-based damage detection has been recognized as a promising tool for diagnosing critical members of civil structures. Since the piezoelectric transducers used in the impedance-based technique should be bonded to the surface of the structure using bonding layers (e.g., epoxy layer), it is hard to maintain the as-built condition of the bonding layers and to reconfigure the devices if needed. This study presents an experimental investigation by using magnetically attached PZT-interface for the impedance-based damage detection in bolted girder connections. Firstly, the principle of the impedance-based damage detection via the PZT-interface device is outlined. Secondly, a PZT-interface attachment method in which permanent magnets are used to replace the conventional bonding layers is proposed. Finally, the use of the magnetic attraction for the PZT-interface is experimentally evaluated via detecting the bolt-loosening events in a bolted girder connection. Also, the sensitivity of impedance signatures obtained from the PZT-interface is analyzed with regard to the interface's material.

Simplified planar model for damage estimation of interlocked caisson system

  • Huynh, Thanh-Canh;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun;Han, Sang-Hun
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.441-463
    • /
    • 2013
  • In this paper, a simplified planar model is developed for damage estimation of interlocked caisson systems. Firstly, a conceptual dynamic model of the interlocked caisson system is designed on the basis of the characteristics of existing harbor caisson structures. A mass-spring-dashpot model allowing only the sway motion is formulated. To represent the condition of interlocking mechanisms, each caisson unit is connected to adjacent ones via springs and dashpots. Secondly, the accuracy of the planar model's vibration analysis is numerically evaluated on a 3-D FE model of the interlocked caisson system. Finally, the simplified planar model is employed for damage estimation in the interlocked caisson system. For localizing damaged caissons, a damage detection method based on modal strain energy is formulated for the caisson system.

목조건축문화재에 있어서 변위 및 손상 유형에 관한 연구 (A Study on the Types of the Displacement and Damage of Wooden Architectural Cultural Assets)

  • 신병욱
    • 한국농촌건축학회논문집
    • /
    • 제21권3호
    • /
    • pp.25-32
    • /
    • 2019
  • This study is to derive the types of displacement and damage that occur in wooden architecture cultural assets. Although the wooden architectural cultural assets are being repaired through continuous maintenance, secondary problems frequently occur. This is because the root cause of the problem has yet to be solved. The types of displacement and damage that occur in the wooden architecture cultural asset are classified into three parts: the foundation section, the gagu section, and the roof section. In turn, the three main factors that lead to displacement and damages are the structures' load impact, the durability deterioration, and the imbalance. Load impact is a phenomenon in which the member is subjected to a load that causes deformation or cracks. Durability decline is a natural phenomenon that reduces the performance of lumber as a result of check shake, termite damage, and decay. The imbalance is a condition in which the lumber is twisted and the force balance is lost, due to either drying shrinkage or displacement of the gagu section.

[논문철회]유빙 하중을 받는 내빙 선박의 피로손상도 추정 Part I - 직접 해석법 ([Retracted]Estimation of the Fatigue Damage for an Ice-going Vessel under Broken Ice Condition Part I - Direct Approach)

  • 김정환;김유일
    • 대한조선학회논문집
    • /
    • 제56권3호
    • /
    • pp.217-230
    • /
    • 2019
  • In this study, a fatigue damage estimation for an ice-going vessel navigating through broken ice fields was carried out. A numerical model to simulate the interaction between ice and structure developed using the finite element method was introduced. Time series of stresses calculated by the proposed model and the corresponding fatigue analysis results are presented. The numerical model enables the long time analysis through an efficient interaction model, the application of the periodic media analysis and the convolution integral, and it allows the stress time history to be extracted directly using the finite element method. To describe the probability distribution of stress amplitudes, the 2-parameter Weibull model was applied to the calculated stress time history, and the fatigue damage was calculated using the Palmgren-Miner rule. Finally, the fatigue damage considering the ice conditions of the Baltic Sea was calculated using the proposed method and LR method, and the results were compared to each other.

노후화된 시멘트 콘크리트 포장에 대한 콘크리트 및 아스팔트 덧씌우기의 포장성능 비교 (Comparison of the Pavement Performance for Concrete Overlay and Asphalt Overlay on Aged Cement Concrete Pavement)

  • 이승우;손현장
    • 한국도로학회논문집
    • /
    • 제13권2호
    • /
    • pp.31-39
    • /
    • 2011
  • 국내 고속도로의 60% 이상이 시멘트 콘크리트 포장으로 건설되었으며, 그 중 공용년수가 20년이 넘어선 구간이 절반 이상에 달하고 있다. 노후화된 시멘트 콘크리트 포장의 보수 보강은 국내의 교통여건상 우회도로가 준비되기 어렵기 때문에 조기 교통개방이 요구되며 현재까지는 주로 아스팔트 덧씌우기가 사용되고 있다. 반면에 아스팔트 덧씌우기 포장은 조기 파손으로 인해 많은 유지보수비용이 지출됨과 동시에 도로사용자의 불편을 초래하고 있다. 최근 들어 노후화 된 시멘트 콘크리트 포장의 효율적인 보강공법으로 접착식 콘크리트 덧씌우기 공법에 대해서 적용을 시도하고 있다. 따라서 아스팔트 덧씌우기 포장과 접착식 콘크리트 덧씌우기 포장의 합리적인 선택에 대한 비교 분석을 위해 포장의 연도별 파손상태에 대한 다양한 data가 필요하다. 하지만, 국내에서는 아스팔트 덧씌우기 포장과 접착식 콘크리트 덧씌우기 포장의 공용 중 파손상태에 대한 자료가 체계적으로 구축되어있지 않다. 본 연구에서는 아스팔트 덧씌우기와 접착식 콘크리트 덧씌우기 공법이 적용된 구간의 파손에 대해 충분한 자료를 구축하고 있는 미국의 LTPP Data를 이용하여, 공용성에 대해서 평가하였다. 단, 아스팔트 덧씌우기와 접착식 콘크리트 덧씌우기 공법은 파손형태가 서로 상이함으로써, 상대적인 비교를 위해 각각의 구간에 대해 포장상태지수(PCI, Pavement Condition Index)를 Database화 하였으며, 아스팔트 덧씌우기 구간과 접착식 콘크리트 덧씌우기 구간의 수명에 대해서 비교 분석을 수행하였다.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • 제2권1호
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

출토 직금직물의 세척방법에 관한 연구 (A Study of Cleaning Method of Excavated Gold Brocade)

  • 홍문경;이미식
    • 한국의류학회지
    • /
    • 제34권7호
    • /
    • pp.1162-1174
    • /
    • 2010
  • Excavated gold brocade, often shows signs of serious damage and contamination from environmental factors such as exposure to soil or human remains. Therefore, most of the conservation procedures are focused on the consolidation of the gold thread and on cleaning with water or organic solvents. Indiscreet cleaning using solvents could damage the gold leaf, which identifies the features of fabric. There is a need to develop cleaning protocols appropriate for relics through the careful analysis of the condition of the relics. This study finds the appropriate cleaning method for the excavated gold brocade. Four different cleaning methods, vacuum cleaning, kneaded rubber eraser cleaning, immersion wet cleaning, and absorption wet cleaning were applied to the excavated gold brocade. The degree of cleaning and damage were examined depending on the cleaning methods, changes to the physical condition (before and after cleaning) were also analyzed through the surface observation. Although immersion cleaning showed the best cleaning result, this method had a risk of damage to the gold thread. Absorption wet cleaning safely eliminated the various soluble contaminants and the rotten smell of relics. Kneaded rubber eraser was suitable for the excavated gold brocade fabric because it can be applied to selective parts, intentionally excluding some sensitive parts such as the gold thread. The vacuum cleaning method required special attention because of a possibility of suctioning off loosely attached gold leaf. Dual cleaning, the kneaded rubber eraser cleaning, followed by the absorption cleaning was the most effective method to preserve and clean excavated gold brocade.

적층각도에 따른 CFRP 평판에서의 굽힘으로 발생한 크랙 파손에 관한 해석적 연구 (Analysis Study on the Damage of Crack Happening with the Bending at CFRP Plate due to Stacking Angle)

  • 황규완;조재웅
    • 한국융합학회논문지
    • /
    • 제8권3호
    • /
    • pp.185-190
    • /
    • 2017
  • 본 논문은 탄소섬유로 구성된 평판형태의 시험편에 굽힘 모멘트가 작용할 때 내부의 섬유구조에서 발생되는 굽힘 응력과 전단응력, 변형에너지에 관한 것이다. CFRP는 무수히 많은 섬유가 다축구조를 형성하고 있어 굽힘조건에서 응력을 효과적으로 분산할 수 있다. 이때 적층각도에 따라 다양한 물성을 보이게 되는데, 섬유의 수평방향인 Stacking angle $0^{\circ}$에서부터 수직방향인 $90^{\circ}$에 이르기까지의 결과에 있어, Stacking angle이 증가함에 따라 등가 응력과 전단응력이 점차 줄어들며 $60^{\circ}$를 기점으로 다시 증가함을 보이고 있다. 본 연구결과를 토대로,적층각도에 따른 평판에서의 굽힘으로 인한 파손특성을 해석적 접근을 통해 고찰하였으며, 본연구는 파손방지와 내구성 향상을 위한 안전설계에 기여할 수 있다고 사료된다. 또한 평판 형상으로서의 디자인적 요소를 융합기술에 접목함으로서 그 미적인 감각을 나타낼 수 있다.

터널 발파설계 최적화를 위한 실험 및 수치해석적 접근 (Experimental and Numerical Approach foy Optimization of Tunnel Blast Design)

  • 이인모;김상균;권지웅;박봉기
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.75-85
    • /
    • 2003
  • 화약폭발로 발생한 응력파 전파특성을 파악하기 위하여 화약종류, 장약조건, 전파매질조건 별로 실내 모형시험 및 현장 암반시험과 수치해석을 시행하였다. 수치해석은 시험조건과 동일한 조건을 모델링하여 시행하였다. 2공을 동시 발파하는 경우에 2공 중심에서 응력크기는 1공 발파보다 2배정도로 증가되었다. 최대응력 도달시간은 디커플링장전조건이 밀장전조건보다 2배정도 지연되어서 가스압력에 의해 최대 응력이 발생하였다. 시험결과와 수치해석결과를 비교.분석한 결과 수치해석결과가 시험결과보다 약간 저평가되었지만 비교적 유사하여 수치해석으로 발파결과를 미리 예측할 수 있었다. 도로터널의 일반적인 발파패턴도에 대하여 수치해석을 시행하고 외곽공과 외곽공과 인접한 확대공 발파로 인하여 발생하는 동적 암반거동 및 암반손상을 평가하였다. 수치해석결과 확대공의 손상영역이 외곽공보다 크게 나타났다. 확대공 손상영역을 감소시키기 위하여 낮은 밀도의 화약사용, 디커플링장전, 확대공과 외곽공사이의 거리 증가 등의 방안을 제안하였다.