• Title/Summary/Keyword: damage/damage identification

Search Result 724, Processing Time 0.023 seconds

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Structural Damage Identification by Using the Spectral Element Model and the Newton-Raphson Method (스텍트럴요소 모델과 Newton-Raphson 법을 이용한 구조손상규명)

  • Kim, Jung-Soo;Kwon, Kyung-Soo;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.921-926
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the non-linearity of damage. The structural damage identification analyses are conducted by using the direct method and the Newton-Raphson method. It is found that, the Newton-Raphson method in general provides the better damage identification results when compared with the results obtained by the direct method.

  • PDF

Experimental Verification of a Structural Damage Identification Method for Beam Structures (보 구조물에 대한 손상검출기법의 실험적 검증)

  • 조국래;이우식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.837-840
    • /
    • 1997
  • This paper provides an experimental verification of an FRF-based structural damage identification method (SDIM) developed by the authors for beam structures. The FRF-based SDIM requires the following data : (1) natural frequencies and mode shapes measured at the intact state and (2) the FRF-data measured at the damaged state. Experiments are conducted for the cantilevered beam with one slot and three slots. It is shown that the FRF-based SDIM developed by the authors provide very successful damage identification results which agree well with true damage state.

  • PDF

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.

Comparative study on damage identification from Iso-Eigen-Value-Change contours and smeared damage model

  • Lakshmanan, N.;Raghuprasad, B.K.;Gopalakrishnan, N.;Sreekala, R.;Rama Rao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.735-758
    • /
    • 2010
  • The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.

Identification of the Structural Damages in a Cylindrical Shell (원통형 셸에 발생한 구조손상의 규명)

  • Kim, Sung-Hwan;Lee, U-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1586-1596
    • /
    • 2005
  • In this paper, a structural damage identification method (SDIM) is developed to identify the line crack-like directional damages generated within a cylindrical shell. First, the equations of motion for a damaged cylindrical shell are derived. Based on a theory of continuum damage mechanics, a small material volume containing a directional damage is represented by the effective orthotropic elastic stiffness, which is dependent of the size and the orientation of the damage with respect to the global coordinates. The present SDIM is then derived from the frequency response function (FRF) directly solved from the equations of motion of a damaged shell. In contrast with most existing SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM may require only the FRF-data measured at damaged state. By virtue of utilizing FRF-data, one may choose as many sets of excitation frequency and FRF measurement point as needed to acquire a sufficient number of equations for damage identification analysis. The numerically simulated damage identification tests are conducted to study the feasibility of the present SDIM.

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

Integrated Damage Identification System for large Structures via Vibration Measurement

  • JEONG-TAE KIM;SOO-YONG PARK;JAE-WOONG YUN;JONG-HOON BAEK
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 2001
  • In this paper, an integrated damage identification system (IDIS) is proposed to locate and size damage in real structures. The application of the IDIS to real structures includes the measurement of modal responses, the construction of damage-detection models, and the implementation of measurements and models into the damage-detection process. Firstly, the theory of the damage identification method is outlined. Secondly, the schematic and each component of the IDIS are described. Finally, the practicality of the IDIS is verified from experiments on two different bridge-models, a model plate-grider and a model truss.

  • PDF

Detection of a concentrated damage in a parabolic arch by measured static displacements

  • Greco, Annalisa;Pau, Annamaria
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.751-765
    • /
    • 2011
  • The present paper deals with the identification of a concentrated damage in an elastic parabolic arch through the minimization of an objective function which measures the differences between numerical and experimental values of static displacements. The damage consists in a notch that reduces the height of the cross section at a given abscissa and therefore causes a variation in the flexural stiffness of the structure. The analytical values of static displacements due to applied loads are calculated by means of the principle of virtual work for both the undamaged and damaged arch. First, pseudo-experimental data are used to study the inverse problem and investigate whether a unique solution can occur or not. Various damage intensities are considered to assess the reliability of the identification procedure. Then, the identification procedure is applied to an experimental case, where displacements are measured on a prototype arch. The identified values of damage parameters, i.e., location and intensity, are compared to those obtained by means of a dynamic identification technique performed on the same structure.