• Title/Summary/Keyword: dam storage capacity

Search Result 67, Processing Time 0.027 seconds

A Study on the Physical Characteristics of Irrigation Reservoirs in Korea (우리나라 관개용 흙댐 저수지의 외형적 제특성에 관한 연구)

  • 정두희;안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.29-37
    • /
    • 1983
  • This study was carried out not only to prepare available materials that can be utilized in basic planning of irrigation reservoirs, but also to contribute to the study on countermeasures for reasonable irrigation water development in Korea in the future, through the investigation for the structural characteristics of reservoirs and their change trend by an epoch. During this study 123 sites of sample reservoirs were analysed in their dimensions of physical constituent factors. The physical characteristics and their change trends revealed by this study are summarized as follows: 1. For the irrigation earth dam in Korea the correlation between dam volume (v) and dam height & length (H$^2$L) can be described as the formula of v=1. 434H2L~17, 300 (r=0. 933), from which embankment amount is assumed to be quickly estimated under determined dam height and length of the proposed reservoir. 2. The ratio of dam volume to dam height & length ranges approximately from 0.5 to 3 (1.7 in average), that of storage capacity to dam volume 2 to 10 (8.4 in average), that of irrigation area to full water surface area 5 to 20 (13 in average) and that of catchment area to irrigation area 2 to 5 (4 in average). Though correlation between dam volume and dam height & length is high, that between others is relatively low. 3. Average storage depth ranges approximately from 4m to l0m (6.6m in average), unit storage capacity 0. 4m to 0. 8m (0.54 in average) and shape factor of dam 5 to 20 (10.5 in average). 4. The more recently planned the reservoirs were, the less storage capacity, dam volume, full water surface and dam shape factor they have. 5. The more recently planned the reservoirs were, the larger storage depth and unit storage capacity they have.

  • PDF

Hydraulic & Hydrologic Design Criteria for an Emergency Drainage of Reservoir (II) (댐 비상방류 설계기준 선정을 위한 수리수문학적 검토(II))

  • Yi, Jaeeung;Son, Kwangik;Kang, Min Suk
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • Low-level outlets are necessary to empty reservoir storage in case of emergency such as abrupt storage level rise due to storm, dam body inspection as well as initial reservoir storage filling. However, the Korean standard for low-level outlet should be complemented. In this study, the HEC-ResSim model is utilized to simulate and calculate the capacity of the outlets and the days of release in order to evacuate reservoir storage safely. Three cases are analyzed according to its capacity. As a large dam with more than $1,000{\times}106m^3$ total capacity, Soyanggang Dam is selected and as a medium dam between $100{\times}106m^3$ and $1,000{\times}106m^3$ total capacity, Habcheon Dam is selected. Finally as a small dam with a total capacity less than $100{\times}106m^3$, Daegok Dam is selected. The size of low-level outlet and days of storage evacuation is estimated and the applicability of the analysis method is studied.

Deformation and stress behavior analysis of high concrete dam under the effect of reservoir basin deformation

  • Zheng, Dongjian;Xu, Yanxin;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Zhao, Erfeng
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1153-1173
    • /
    • 2016
  • According to deformation data measured in some high concrete dams, for dam body deformation, there is a complex relationship with dam height and water head for different projects, instead of a simple monotonic relationship consistently. Meanwhile, settlement data of some large reservoirs exhibit a significant deformation of reservoir basin. As water conservancy project with high concrete dam and large storage capacity increase rapidly these decades, reservoir basin deformation problem has gradually gained engineers' attentions. In this paper, based on conventional analytical method, an improved analytical method for high concrete dam is proposed including the effect of reservoir basin deformation. Though establishing FEM models of two different scales covering reservoir basin and near dam area respectively, influence of reservoir basin on dam body is simulated. Then, forward and inverse analyses of concrete dam are separately conducted with conventional and proposed analytical methods. And the influence of reservoir basin deformation on dam working behavior is evaluated. The results of two typical projects demonstrate that reservoir basin deformation will affect dam deformation and stress to a certain extent. And for project with large and centralized water capacity ahead of dam site, the effect is more significant than those with a slim-type reservoir. As a result, influence of reservoir basin should be taken into consideration with conducting analysis of high concrete dam with large storage capacity.

Bivariate Frequency Analysis of Dam Storage Capacity before and after the Rainy Season and Evaluation on Water Supply Capacity (우기 전후 댐 저수용량에 대한 이변량 빈도해석과 댐의 용수공급능력 평가)

  • Jun, Changhyun;Yoo, Chulsang;Zhu, Ju Hua;Lee, Gwang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1199-1212
    • /
    • 2014
  • This study proposes an evaluation method of water supply capacity of a dam, which uses the concept of return period by conducting bivariate frequency analysis of dam storage capacity. The proposed method was applied to the Daecheong Dam for the evaluation. Additionally, the return periods of Daecheong Dam were estimated for the representative drought events in Korea, whose results were also reviewed. Summarizing the results is as follows. First, this study evaluated several climatological factors related to the water supply capacity of dams in Korea to conduct the bivariate frequency analysis and selected the storage on May and the storage difference between June and October as variables for analysis. Second, as an evaluation result of the water supply capacity of the Daecheong Dam, it was found that the Daecheong Dam secures the water supply capacity under 20 years of return period. Finally, it was also confirmed that the proposed method in this study is valid to analyze and estimate the return period of representative drought events occurred in the Korean peninsula.

Parallel reservoirs system operation using NYC-Space Allocation-Rule (NYC-Space Allocation Rule을 이용한 병렬저수지 연계운영)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.533-542
    • /
    • 2005
  • In this study, an optimization technique was developed from the application of Allocation Rule. Average Allocation coefficients of the Andong and Imha dam compare constant water supply condition with vary water supply condition that are above the contribute ratio $67\%\~50\%$ the Andong dam in Rule(A)-Rule(C). In the Refill Season, Andong dam water supply contribution is higher than Imha dam at the Control point water supply. In the Allocation analysis results, Rule(A) is calculated storage ratio because Andong dam contribute to Control point larger than Imha dam which Andong dam storage is larger than Imha dam storage. Rule(B) calculated sum of the storage and inflow ratio for Andong dam and Imha dam, as Andong dam contribution is higher than Imha dam. Rule(C) calculated that sum of storage, inflow and water supply is divided average storage ratio, as the best results of the Allocation coefficients and water supply capacity. The results of storage analysis is larger vary water supply condition than constant water supply condition and the results of water supply analysis is larger vary water supply condition than constant water supply condition. Water supply deficit is decrease $30\%$ for vary water supply condition.

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

Development of Storage Management Method for Effective Operation of Small Dams (소규모 댐의 효과적 운영을 위한 저수관리 기법 개발)

  • Kim Phil-Shik;Kim Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Large dams are managed with operation standard and flood forecasting systems, while small dams do not have management method generally. Shortage of water resources and natural disasters due to drought and flood raised public concerns for management of small dams. Most of small dams are irrigation dams, which need diversified water uses. However, the lack of systematic management of small dams have caused serious water wastage and increased natural disasters. Storage management method and system were developed to solve these problems in small dams. The system was applied to Seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method can bring additional available water, even in the same conditions of the water demand and the supply conditions of watershed. It can improve the flood control capacity and water utilization efficiency by' the flexible operation of storage space.

Utilization of Peace Dam for Conservation Purpose (이수측면에서 평화의댐 활용방안 연구)

  • Yi, Jae-Eung;Lim, Dong-Sun;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.653-662
    • /
    • 2004
  • In this study, the method of Increasing the flood control as well as conservation effects is studied by joint operation of Hwacheon and Peace Dam. After completing the second phase of the construction of the Peace Dam, the dam crest height will be increased from 225m and the storage capacity will also be increased. If storage capacity is increased and gates are installed, it will assist not only flood control but also conservation of the entire Han river basin. Considering the change of conservation levels, the change of the restricted water level of the Hwacheon Dam in flood season, and the inflow change into the Peace Dam through the simulated reservoir operation, the annual average power of Hwacheon Dam with 95% reliability, annual firm power, the volume of water supply is calculated. As a result, when the conservation level of the Peace Dam and the restricted water level of the Hwacheon Dam are increased, the generation capacity will be improved. However, even though the inflow decrease, the generation capacity will not be affected. If the inflow decrease under the same conditions, the water supply capability will be reduced to the range from 35% to 40%. It is necessary to increase conservation level to keep the same water supply capability.

Effects of Agricultural Reservoir Rehabilitation on their Flood Control Capacities (농업용 저수지 둑 높이기에 따른 홍수조절효과 분석)

  • Jun, Sang Min;Kang, Moon Seong;Song, Inhong;Hwang, Soon Ho;Kim, Kyeung;Park, Jihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.57-68
    • /
    • 2013
  • About 74 % of reservoirs in Korea are older than 40 years and their storage capacities have been decreased substantially. As part of reservoir reinforcement, the dam heightening project has been ongoing for about 110 reservoirs. The main purpose of the dam heightening project is to secure additional environmental water, while improving flood control capacity by gaining additional storage volume. The objective of this study was to evaluate reservoir flood control capacity changes of dam heightening reservoirs for effective management of additional storage volume. In this study, 13 reservoirs were selected for reservoir simulation of 200 year return period floods. Rainfall data of 1981-2100 were collected and divided into 4 periods (1981-2010; 1995s, 2011-2040; 2025s, 2041-2070; 2055s, 2071-2100; 2085s). Probability rainfalls and 200yr design floods of each period were calculated using FARD2006 and HEC-HMS. Design floods were used as inputs of each reservoir simulation using HEC-5. Overall, future probability rainfalls and design floods tend to increase above the past 1995s. Control ratios were calculated to evaluate flood control capacities of reservoirs. As a result, average flood control ratios were increased from 32.6 % to 44.2 % after dam heightening. Control ratios were increased by 12.7 % (1995s), 12.4 % (2025s), 10.3 % (2055s) and 10.9 % (2085s). The result of this study can be used as a basis for establishing the reservoir management structure in the future.

A Study on Daily Water Storage Simulation of the Daecheong Dam by Operation Scenario of the Yongdam Dam (용담댐 운영 시나리오에 따른 대청댐 저수량 변화에 관한 연구)

  • Noh Jaekyoung;Kim Hyun-hoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1403-1407
    • /
    • 2005
  • In order to analyze the water storage of the Daecheong dam after constructing the Yongdam dam situated in upstream, a daily cascaded simulation model for analyzing water storages in the Yongdam-Daecheong dams was developed. Operation scenarios of the Yongdam dam were selected to 8 cases with the combinations of downstream outflows and water supplies to the Jeonju region. Daily water storages in the Daecheong dam was analyzed daily by simulating from 1983 to 2004. The results are summarized as follows. Firstly, water supplies from the Daecheong dam were analyzed to amount $1,964.2Mm^3$ on a yearly average in case without the Yongdam dam. In case with the Yongdam dam, water supplies from the Daecheong dam were analyzed to amount $1,858.7\~1,927.3Mm^3$ in case with downstream outflow of $5\;m^3$ is, and were analyzed to amount $1,994.9\~2,017.8Mm^3$ in case with downstream outflow of $10\;m^3/s $. These values are compared to $1,649Mm^3$ applied in design. Secondly, reservoir use rate which was defined rate of water supply to effective water storage reached $241.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $228.3\~236.8\% In case with downstream outflow of $5\;m^3/s$, and reached $245.1\~247.9\% in case with downstream outflow of $10\;m^3/s$. Thirdly, runoff rate which is defined rate of dam inflow to areal rainfall reached $57.3\% in case without the Yongdam dam. In case with the Yongdam dam, reservoir use rate reached $62.0\~68.4\% in case with downstream outflow of $5\;m^3/s$, and reached $64.1\~68.5\% in case with downstream outflow of $10\;m^3/s$. Fourth, in case with downstream outflow of $10\;m^3/s$ is from the Yongdam dam, appropriate water supply amounts to the Jeonju region were analyzed to only $0.50Mm^3/day$ from the daily simulation of water storages in the Yongdam dam. Comprehensively, water supply capacity of the Daecheong dam was analyzed to affect in small amounts in spite of the construction of the Yonsdam dam. It is effected to achieve the effective water management of the Yongdam dam and the Daecheong dam by using the developed cascaded model.

  • PDF