• Title/Summary/Keyword: dam inflow forecasting

Search Result 37, Processing Time 0.027 seconds

Influence of Rainfall observation Network on Daily Dam Inflow using Artificial Neural Networks (강우자료 형태에 따른 인공신경망의 일유입량 예측 정확도 평가)

  • Kim, Seokhyeon;Kim, Kyeung;Hwang, Soonho;Park, Jihoon;Lee, Jaenam;Kang, Moonseong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.63-74
    • /
    • 2019
  • The objective of this study was to evaluate the influence of rainfall observation network on daily dam inflow using artificial neural networks(ANNs). Chungju Dam and Soyangriver Dam were selected for the study watershed. Rainfall and dam inflow data were collected as input data for construction of ANNs models. Five ANNs models, represented by Model 1 (In watershed, point rainfall), Model 2 (All in the Thiessen network, point rainfall), Model 3 (Out of watershed in the Thiessen network, point rainfall), Model 1-T (In watershed, area mean rainfall), Model 2-T (All in the Thiessen network, area mean rainfall), were adopted to evaluate the influence of rainfall observation network. As a result of the study, the models that used all station in the Thiessen network performed better than the models that used station only in the watershed or out of the watershed. The models that used point rainfall data performed better than the models that used area mean rainfall. Model 2 achieved the highest level of performance. The model performance for the ANNs model 2 in Chungju dam resulted in the $R^2$ value of 0.94, NSE of 0.94 $NSE_{ln}$ of 0.88 and PBIAS of -0.04 respectively. The model-2 predictions of Soyangriver Dam with the $R^2$ and NSE values greater than 0.94 were reasonably well agreed with the observations. The results of this study are expected to be used as a reference for rainfall data utilization in forecasting dam inflow using artificial neural networks.

Probabilistic Forecasting of Seasonal Inflow to Reservoir (계절별 저수지 유입량의 확률예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

Short Term Drought Forecasting using Seasonal ARIMA Model Based on SPI and SDI - For Chungju Dam and Boryeong Dam Watersheds - (SPI 및 SDI 기반의 Seasonal ARIMA 모형을 활용한 가뭄예측 - 충주댐, 보령댐 유역을 대상으로 -)

  • Yoon, Yeongsun;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.61-74
    • /
    • 2019
  • In this study, the SPI (Standardized Precipitation Index) of meteorological drought and SDI (Streamflow Drought Index) of hydrological drought for 1, 3, 6, 9, and 12 months duration were estimated to analyse the characteristics of drought using rainfall and dam inflow data for Chungju dam ($6,661.8km^2$) with 31 years (1986-2016) and Boryeong dam ($163.6km^2$) watershed with 19 years (1998-2016) respectively. Using the estimated SPI and SDI, the drought forecasting was conducted using seasonal autoregressive integrated moving average (SARIMA) model for the 5 durations. For 2016 drought, the SARIMA had a good results for 3 and 6 months. For the 3 months SARIMA forecasting of SPI and SDI, the correlation coefficient of SPI3, SPI6, SPI12, SDI1, and SDI6 at Chungju Dam showed 0.960, 0.990, 0.999, 0.868, and 0.846, respectively. Also, for same duration forecasting of SPI and SDI at Boryeong Dam, the correlation coefficient of SPI3, SPI6, SDI3, SDI6, and SDI12 showed 0.999, 0.994, 0.999, 0.880, and 0.992, respectively. The SARIMA model showed the possibility to provide the future short-term SPI meteorological drought and the resulting SDI hydrological drought.

Forecasting of Daily Inflows Based on Regressive Neural Networks

  • Shin, Hyun-Suk;Kim, Tae-Woong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.45-51
    • /
    • 2001
  • The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinear and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting models of daily inflows to a large dam site using neural networks. In order to reduce the error caused by high or low outliers, the back propagation algorithm which is one of neural network structures is modified by combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real time is possible through the use of modified neural network models. The positive effect of the modification using tole regression scheme in BP algorithm is showed in the low and high ends of inflows.

  • PDF

Development of Real-Time Forecasting and Management System for the Youngsan Estuary Dam (영산강 하구둑 실시간 홍수예보 및 관리시스템 개발)

  • Kang, Min-Goo;Park, Seung-Woo;Her, Young-Gu;Park, Chang-Eun;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.285-288
    • /
    • 2002
  • For real-time flood forecasting and effective control flood at the Youngsan estuary dam, the Flood Forecasting and Control User Interface System II (FFCUS II) has been developed. This paper describes the features and application of FFCUS II. FFCUS II is composed of the database management subsystem, the model subsystem, and the graphic user interface. The database management subsyem collects rainfall data and stream flow data, updates, processes, and searches the data. The model subsystem predicts the inflow hydrograph, the tide, forecasts flood hydrograph, and simulates the release rate from the sluice gates. The graphic user interface subsystem aids the user's decision-making process by displaying the operation results of the database management subsystem and model subsystem.

  • PDF

Prediction of dam inflow based on LSTM-s2s model using luong attention (Attention 기법을 적용한 LSTM-s2s 모델 기반 댐유입량 예측 연구)

  • Lee, Jonghyeok;Choi, Suyeon;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.495-504
    • /
    • 2022
  • With the recent development of artificial intelligence, a Long Short-Term Memory (LSTM) model that is efficient with time-series analysis is being used to increase the accuracy of predicting the inflow of dams. In this study, we predict the inflow of the Soyang River dam, using the LSTM model with the Sequence-to-Sequence (LSTM-s2s) and attention mechanism (LSTM-s2s with attention) that can further improve the LSTM performance. Hourly inflow, temperature, and precipitation data from 2013 to 2020 were used to train the model, and validate and test for evaluating the performance of the models. As a result, the LSTM-s2s with attention showed better performance than the LSTM-s2s in general as well as in predicting a peak value. Both models captured the inflow pattern during the peaks but detailed hourly variability is limitedly simulated. We conclude that the proposed LSTM-s2s with attention can improve inflow forecasting despite its limits in hourly prediction.

Real-Time Forecasting of Flood Discharges Upstream and Downstream of a Multipurpose Dam Using Grey Models (Grey 모형을 이용한 다목적댐의 유입 홍수량과 하류 하천 홍수량 실시간 예측)

  • Kang, Min-Goo;Cai, Ximing;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.61-73
    • /
    • 2009
  • To efficiently carry out the flood management of a multipurpose dam, two flood forecasting models are developed, each of which has the capabilities of forecasting upstream inflows and flood discharges downstream of a dam, respectively. The models are calibrated, validated, and evaluated by comparison of the observed and the runoff forecasts upstream and downstream of Namgang Dam. The upstream inflow forecasting model is based on the Grey system theory and employs the sixth order differential equation. By comparing the inflows forecasted by the models calibrated using different data sets with the observed in validation, the most appropriate model is determined. To forecast flood discharges downstream of a dam, a Grey model is integrated with a modified Muskingum flow routing model. A comparison of the observed and the forecasted values in validation reveals that the model can provide good forecasts for the dam's flood management. The applications of the two models to forecasting floods in real situations show that they provide reasonable results. In addition, it is revealed that to enhance the prediction accuracy, the models are necessary to be calibrated and applied considering runoff stages; the rising, peak, and falling stages.

Analysis of ensemble streamflow prediction effect on deriving dam releases for water supply (용수공급을 위한 댐 방류량 결정에서의 앙상블 유량 예측 효과 분석)

  • Kim, Yeonju;Kim, Gi Joo;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.969-980
    • /
    • 2023
  • Since the 2000s, ensemble streamflow prediction (ESP) has been actively utilized in South Korea, primarily for hydrological forecasting purposes. Despite its notable success in hydrological forecasting, the original objective of enhancing water resources system management has been relatively overlooked. Consequently, this study aims to demonstrate the utility of ESP in water resources management by creating a simple hypothetical exercise for dam operators and applying it to actual multi-purpose dams in South Korea. The hypothetical exercise showed that even when the means of ESP are identical, different costs can result from varying standard deviations. Subsequently, using sampling stochastic dynamic programming (SSDP) and considering the capacity-inflow ratio (CIR), optimal release patterns were derived for Soyang Dam (CIR = 1.345) and Chungju Dam (CIR = 0.563) based on types W and P. For this analysis, Type W was defined with standard deviation equal to the mean inflow, and Type P with standard deviation ten times of the mean inflow. Simulated operations were conducted from 2020 to 2022 using the derived optimal releases. The results indicate that in the case of Dam Chungju, more aggressive optimal release patterns were derived under types with smaller standard deviations, and the simulated operations demonstrated satisfactory outcomes. Similarly, Soyang Dam exhibited similar results in terms of optimal release, but there was no significant difference in the simulation between types W and P due to its large CIR. Ultimately, this study highlights that even with the same mean values, the standard deviation of ESP impacts optimal release patterns and outcomes in simulation. Additionally, it underscores that systems with smaller CIRs are more sensitive to such uncertainties. Based on these findings, there is potential for improvements in South Korea's current operational practices, which rely solely on single representative values for water resources management.

Application to Evaluation of Hydrologic Time Series Forecasting for Long-Term Runoff Simulation (장기유출모의를 위한 수문시계열 예측모형의 적용성 평가)

  • Yoon, Sun-Kwon;Ahn, Jae-Hyun;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.10
    • /
    • pp.809-824
    • /
    • 2009
  • Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.

Real-time Upstream Inflow Forecasting for Flood Management of Estuary Dam (담수호 홍수관리를 위한 상류 유입량 실시간 예측)

  • Kang, Min-Goo;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1061-1072
    • /
    • 2005
  • A hydrological grey model is developed to forecast short-term river runoff from the Naju watershed located at upstream of the Youngsan estuary dam in Korea. The runoff of the Naju watershed is measured in real time at the Naju streamflow gauge station, which is a key station for forecasting the upstream inflow and operating the gates of the estuary dam in flood period. The model's governing equation is formulated on the basis of the grey system theory. The model parameters are reparameterized in combination with the grey system parameters and estimated with the annealing-simplex method In conjunction with an objective function, HMLE. To forecast accurately runoff, the fifth order differential equation was adopted as the governing equation of the model in consideration of the statistic values between the observed and forecast runoff. In calibration, RMSE values between the observed and simulated runoff of two and six Hours ahead using the model range from 3.1 to 290.5 $m^{3}/s,\;R^2$ values range from 0.909 to 0.999. In verification, RMSE values range from 26.4 to 147.4 $m^{3}/s,\;R^2$ values range from 0.940 to 0.998, compared to the observed data. In forecasting runoff in real time, the relative error values with lead-time and river stage range from -23.4 to $14.3\%$ and increase as the lead time increases. The results in this study demonstrate that the proposed model can reasonably and efficiently forecast runoff for one to six Hours ahead.