• Title/Summary/Keyword: dam effects

Search Result 471, Processing Time 0.023 seconds

Underwater explosion and its effects on nonlinear behavior of an arch dam

  • Moradi, Melika;Aghajanzadeh, Seyyed Meisam;Mirzabozorg, Hasan;Alimohammadi, Mahsa
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.333-351
    • /
    • 2018
  • In the present paper, the behavior of the Karaj double curvature arch dam is studied focusing on the effects of structural nonlinearity on the responses of the dam body when an underwater explosion occurred in the reservoir medium. The explosive sources are located at different distances from the dam and the effects of the cavitation and the initial shock wave of the explosion are considered. Different amount of TNT are considered. Two different linear and nonlinear behavior are assumed in the analysis and the dam body is assumed with and without contraction joints. Radial, tangential and vertical displacements of the dam crest are obtained. Moreover, maximum and minimum principal stress distributions are plotted. Based on the results, the dam body responses are sensitive to the insertion of joints and constitutive model considered for the dam body.

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.

Long-term Sediment Discharge Analysis in Yongdam Dam Watershed due to Climate Change

  • Felix, Micah Lourdes;Kim, Joocheol;Choi, Mikyoung;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.327-327
    • /
    • 2020
  • Increase in Earth's surface temperature, higher rainfall intensity rate, and rapid changes in land cover are just some of the most evident effects of climate change. Flooding, and river sedimentation are two inevitable natural processes in our environment, and both issues poses great risks in the dam industry when not addressed properly. River sedimentation is a significant issue that causes reservoir deposition, and thus causes the dam to gradually lose its ability to store water. In this study, the long-term effects of climate change on the sediment discharge in Yongdam Dam watershed is analyzed through the utilization of SWAT, a semi-distributed watershed model. Based from the results of this study, an abrupt increase on the annual sediment inflow trend in Yongdam Dam watershed was observed; which may suggests that due to the effects of climate change, higher rainfall intensity, land use and land cover changes, the sedimentation rate also increased. An efficient sedimentation management should consider the increasing trend in sedimentation rate due to the effects of climate change.

  • PDF

Effects of a Degree of Discretization in the Direction of Longitudinal Dam Axis on the Results of 3-D Fill Dam Response Analysis (댐 축방향 분할도가 3차원 필댐 지진응답해석 결과에 미치는 영향)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.72-83
    • /
    • 2009
  • The purpose of this study is to examine the effects of a degree of discretization in the direction of longitudinal dam axis on the results of three dimensional fill dam dynamic analysis. In this study, the three dimensional dynamic analyses of the existing 'H' dam which is modeled with a different degree of discretization were carried out. From these results, the fundamental frequency of the dam and the responses at the dam crest such as acceleration and settlement were compared and analyzed. It was concluded that the size of finite element discretized in the direction of the longitudinal axis mush be smaller than 1/8 of dam length in order to obtain the reasonable fundamental frequency and response of acceleration and mush be smaller than 1/10 in order to obtain the reasonable settlement behaviors from the three dimensional dynamic analysis of the fill dam.

  • PDF

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

Effects of a Dam Construction on the Radial Growths of Pinus densiflora (댐건설이 소나무의 연륜생장에 미치는 영향)

  • 정연숙
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.251-255
    • /
    • 1998
  • To elucidate the effects of a hydroelectric dam construction on annual ring growth of Pinus densiflora, the annual ring widths of 68 trees collected from 7 sites were closely examined. The result was analyzed to ask three special questions first, whether there are real effects of dam construction on the radial growth second, would the magnitude of the effect be different due to two periods of under-construction and post-construction the last, would it be different among age classes. Annual ring growth has been significantly enhanced by the dam construction. Specially, its effect was marked after the construction was finished and the reservoir was filled up with water. There was, however, no remarkable evidence that pine growth would be reduced while the dam was under construction, even though there was a minor decreasing trend. The magnitude of the effect was different among age groups. That is, the changed condition after the construction enhanced relatively the growth of aged trees monre. According to other meterological research since the dam was constructed, the reasons of enhancing pine growth assumed to be the increase of daily temperature, the decreased of daily temperature difference and the increased of rainy days.

  • PDF

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects

  • Hariri-Ardebili, Mohammad Amin;Seyed-Kolbadi, Seyed Mahdi;Mirzabozorg, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.17-39
    • /
    • 2013
  • In the present paper, a coaxial rotating smeared crack model is proposed for mass concrete in three-dimensional space. The model is capable of applying both the constant and variable shear transfer coefficients in the cracking process. The model considers an advanced yield function for concrete failure under both static and dynamic loadings and calculates cracking or crushing of concrete taking into account the fracture energy effects. The model was utilized on Koyna Dam using finite element technique. Dam-water and dam-foundation interactions were considered in dynamic analysis. The behavior of dam was studied for different shear transfer coefficients considering/neglecting fracture energy effects. The results were extracted at crest displacement and crack profile within the dam body. The results show the importance of both shear transfer coefficient and the fracture energy in seismic analysis of concrete dams under high hydrostatic pressure.

Arrival direction effects of travelling waves on nonlinear seismic response of arch dams

  • Akkose, Mehmet
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.179-199
    • /
    • 2016
  • The aim of this study is to investigate arrival direction effects of travelling waves on non-linear seismic response of arch dams. It is evident that the seismic waves may reach on the dam site from any direction. Therefore, this study considers the seismic waves arrive to the dam site with different angles, ${\theta}=0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and $90^{\circ}$ for non-linear analysis of arch dam-water-foundation interaction system. The N-S, E-W and vertical component of the Erzincan earthquake, on March 13, 1992, is used as the ground motion. Dam-water-foundation interaction is defined by Lagrangian approach in which a step-by-step integration technique is employed. The stress-strain behavior of the dam concrete is idealized using three-dimensional Drucker-Prager model based on associated flow rule assumption. The program NONSAP is employed in response calculations. The time-history of crest displacements and stresses of the dam are presented. The results obtained from non-linear analyses are compared with that of linear analyses.